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Motivation for studying bioelectronics

• Biological signal quantification is of paramount importance in
bioengineering.

• Most sensors convert physiological quantities into a voltage or
current signal, which must then be processed into a meaningful

quantity.

• Most actuators used in bioengineering are driven by electrical
signals. These signals must be clean and accurate to ensure

efficacy and safety.

“When you can measure what you are speaking about, and express it in

numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meager

and unsatisfactory kind: it may be the beginning of knowledge, but you

have scarcely in your thoughts advanced to the stage of science whatever

the matter may be.” Lord Kelvin
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Topics we will cover:

• Context in terms of “the course so far” - physiological
quantities, sensors and actuators.

• Basic circuit analysis - mode analysis and Kirchoff’s Current
Law

• Operational amplifiers (op-amps)

• Capacitors, inductors and frequency response

• Basic filters and tuned circuits

To explore further:

“The Art of Electronics” Horowitz and Hill

“Electronic Design” Savant, Roden and Carpenter

“Principles of Measurement Systems” Bentley

Recommended classes at Cal: EE145L,M
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Notes
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Measuring physiological quantities

Try to find examples of sensors and actuators which do not require

any bioelectronic signal conditioning:

Physiological Sensor Quantity measured

quantity/process or actuator or influenced
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Measuring physiological quantities

Now find examples of sensors and actuators which do employ

bioelectronics:

Physiological Sensor Quantity measured

quantity/process or actuator or influenced
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Measuring physiological quantities

Physiological Sensor Quantity measured

quantity

blood flow stethoscope (microphone) sound of blood flow,

heart valve motion

ultrasound/laser Doppler Doppler shift off red blood cells

electromagnetic flowmeter electromagnetic induction

gamma camera (PET/SPECT) radiotracer kinetics

plethysmograph (optical) absorbed/reflected infrared

blood pressure strain gauge load cell pressure inside cuff

tonometer force on arterial wall

nerve/muscle electrodes (Ag-AgCl, nanoneedles) electric potential

activiation SQUIDs (B-field sensors) induced magnetic fields

({E,M}EG, {E,M}CG)

metabolic rate gamma camera and radiotracer glucose utilization

MRI blood oxygen levels

chemical microarray light (luminescence/

concentration with photodetector fluourescence)
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Actuators in biomedicine

Application Actuator Quantity influenced

cardiac defibrillation electrodes and current source heart function

pacemaker current source heart synchronization

electroconvulsive therapy electrodes and current source psychological state

(shock treatment)

radiation therapy X-ray source tumor growth rate

limb replacement electric motor limb position

muscle relaxation ultrasonic transducer tissue temperature,

muscle contracile state

vascular reactivity testing electrodes and small blood vessel diameter,

iontophoresis controller blood velocity in skin
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Typical biolectronic measurement system

+

sensor

−

amplifier low-pass filter A/D converter Data encoder

Digital display

PC

Digital radio
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BIOE153: Basic electric circuits

Ideal voltage source:

−
Vs

+

i1

R

Figure 1: Ideal voltage source connected in a simple circuit.

By Ohm’s Law and the definition of an ideal voltage source: i1 =
Vs

R .

• Defines voltage across its terminals - has no internal resistance.

Real world voltage sources always have internal resistance - the

terminal voltage as the load resistance decreases.

• A short-circuited ideal voltage source produces

current in the circuit.
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Ideal current source:

Is

i1

R

+

v1

−

Figure 2: Ideal current source connected in a simple circuit.

By the definition of the ideal current source, i1 = Is. By Ohm’s

Law: v1 = IsR.

• Defines the conventional current flowing from its positive

terminal,through the external circuit, to its negative terminal. The

voltage across the terminals of a current source must change to

maintain the current supplied at a constant value,

• A short-circuited ideal current source must have

voltage across its terminals.
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Important convention in circuit analysis:

Is

i1

R

+

v1

−

• Voltage drops across resistors, such as the potential v1 over R, are

always defined so that the drop in potential is in the direction of

current flow.

• In other words, the terminal at which current enters a resistor,

capacitor or inductor must be defined as positive with respect to the

terminal at which current leaves.
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Real world sources:

−
Vs

+

i1

R

Figure 3: A user controlled voltage source (such as a laboratory

power supply) is set to Vs = 30V and is connected to a variable

resistor. A current i1 flows through the circuit. The power supply is

only rated to produce 1A and will not provide a larger current.
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Figure 4: As the load resistance is decreased by adjusting the variable

resistor, the current i1 = Vs/R rises until the output current limit

of the power supply of 1A is reached. Before this limit, the source

behaves as an ideal voltage source. For loads smaller than 30Ω the

source behaves as an ideal current source with Is = 1A.
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Circuit analysis: Kirchoff’s Current Law:

−
Vs

+

A R1 i1 B

R2

i2

C

R3i3 D

R4

• Circuit state is completely defined by the voltage at each node and

the current in each branch.

• The law of conservation of charge implies that the sum of the

currents leaving a node is equal to the sum of the currents

entering that node. This is Kirchoff’s Current Law (KCL).

• Problem: Given a value for Vs, what are the voltages at nodes B and

D and the values of the three branch currents? (5 unknowns)
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Circuit analysis: Kirchoff’s Current Law:

−
Vs

+

A R1 i1 B

R2

i2

C

R3i3 D

R4

1. We begin by labeling all of the branch currents in the circuit: i1, i2

and i3. Not that the direction we assign to these currents is

arbitrary. If the current is actually flowing in the opposite

direction to our assumption, the current value will be negative.

2. It is convenient to assign a potential of zero to node C.

3. At node B, KCL gives:

i1 + i3 = i2. (1)
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4. Applying Ohm’s Law across R1 gives:

i1 = (Vs − vB)/R1. (2)

5. Similarly

i2 = vB/R2 and (3)

i3 = −vB/(R3 +R4). (4)

6. Substituting (2),(3) and (4) into (1) gives:

vB = Vs
R2(R3 +R4)

R2(R3 +R4) +R1R2 +R1(R3 +R4)

7. The only remaining unknown is the voltage at node D:

(vD − vB)/R3 = i3 = −vB/(R3 +R4) (from (4)). Giving:

vD = vB
R4

R3 +R4

(5)

8. We originally had 5 unknowns: i1, i2, i3, vB and vD. Using node

analysis, we solved 5 independent equations. All of the quantities

describing the state of the circuit are now known.
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9. Suppose Vs = 30V, R1 = 100Ω, R2 = 50Ω, R3 = 200Ω and

R4 = 50Ω.

Calculate:

vB =

vD =

i1 =

i2 =

i3 = .

1. Write these values onto the circuit diagram and see if they make

sense.

2. Do all the currents flow in the directions initially assumed? If so, is

our analysis still correct?

Reader reference: pp. 54-57, 64 “The Node Method”.

Independent reading: pp. 64-68 “Voltage and current dividers”
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Exercises on DC circuit analysis

1. Problem 2.6, page 458 of reader.

2. Problem 2.7, page 459 of reader.

3. Solve Problem 2.11, page 459 of reader using the laws for

combining parallel and series resistors.

4. Problem 2.28, page 463 of reader.
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Amplification and filtering

• Transducers used to measure physiological signals usually
produce voltage signals in the microvolt to millivolt ranges.

These signals are easily corrupted by noise in the environment.

Usually, this means that signals must be amplified

immediately after leaving the sensor.

• Amplification of the signal almost always results in the
amplification of unwanted noise. Amplified signals are typically

filtered in order to remove as much noise as is possible

without sacrificing the signal of interest.

• Most present day bioinstrumentation uses operational
amplifiers to perform amplification and filtering. These are

analog integrated circuits containing very high gain amplifers.

“Op-amps” are easy to configure to provide a specific gain and

frequency response.
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Amplification and filtering: Practical example

The Photoplethysmograph

Light-source

Photo-detector

Finger: vascular bed

Figure 5: As blood volume in the finger vascular bed increases during

systole, the amount of infrared light transmitted through the finger

decreases. Thus, the amplitude of the received light is inversely

related to the blood volume in the finger. The pulse waveform can

therefore be measured non-invasively.
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The Photoplethysmograph

+

Vs

− D1 D2

+
vi(t)
−

amplifier filter

vo(t)

+

−

Figure 6: Block schematic diagram of a simple photoplethysmo-

graph. An infrared light-emitting diode (LED) D1 is supplied with a

constant current and produces constant light output, which radiates

into the vascular bed. The scattered and attenuated light is received

by photodiode D2. It is then amplified using an op-amp and then

low-pass filtered to produce a pulse waveform signal vo.
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Estimate the pulse rate from the

plethysmograph output:

beats per minute.
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Operational amplifiers

• The op-amp is a microfabricated amplifier with very high gain
(typically 105-106).

• By subtracting some of its output from its input, it is possible
to design amplifiers with a specific gain and frequency

response. This is termed negative feedback.

• The schematic representation of the op-amp is:

−

+

+V

−V

inverting input

non-inverting input
output

Figure 7: Op-amp symbol. Most op-amps are powered by two power

supplies that are symmetric about ground potenial. The positive

supply is connected to the pin +V and the negative to pin −V .
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Real-world operational amplifiers

• The “741” is the best known op-amp chip ever produced. Each
IC contains a single op-amp:

Inverting input

Non-inverting input

−V
Output

+V−
+

Figure 8: Pin connections of the 741 op-amp IC.
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Real-world operational amplifiers

• This is how the 741 looks in real life:
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The ideal op-amp

Many common op-amp circuits can be accurately analyzed by

assuming that the op-amp used is ideal.

v−

Ri

iin
v+

vd = (v+ − v−) −
+

Gvd

Ro
+

−

vo

Figure 9: Simple model of the op-amp. The output voltage is given

by vo = G(v+ − v−) = Gvd where v+ and vi are the voltages at the

inverting and non-inverting inputs, respectively.
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Simplest op-amp circuit: Op-amp comparator

−

+
vo

R1 = 10kΩ

+15V

R2 = 20kΩ

−15V

vi = 10 sin(2π10t)

+15V

−15V

Figure 10: At inverting input: v− = V.

NOTE: Dots denote connections between crossing wires. v+ is NOT

connected to v− in this circuit.
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Op-amp comparator: a non-linear circuit
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Figure 11: Owing to the very high gain of the op-amp, when the

voltage at v+ exceeds that at v−, the output tries to go to +∞ volts.

Since the supply voltage is only +15V, the output saturates at 15V.

When v− is greater than v+ the output saturates at the negative

supply rail.
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Ideal op-amp assumptions

v−

Ri

iin
v+

vd = (v+ − v−) −
+

Gvd

Ro
+

−

vo

• Infinite input resistance (Ri → ∞). This implies zero input
current (iin = 0).

• Infinite voltage gain (G → ∞).
• Infinite bandwidth (Same gain G regardless of the frequency of
the input signal).

• Zero output resistance (Ro = 0).

• Zero output voltage offset (vo = 0 when v+ = v−).
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Linear op-amp circuits: Inverting amplifier

By feeding back some of the output of an op-amp to the inverting

input, the op-amp gain can be reduced. Linear op-amp amplifier

circuits are created in this way.

−

+
vo

Ra

ia
vi

R

ib

Rfif

+Vs

−Vs

Figure 12: The larger the current if fed back to the inverting input,

the lower the magnitude of the circuit gain |vo/vi|.
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The inverting amplifier: analysis

In all of our analyses of op-amp circuits we assume the op-amps are

ideal. In addition, we invoke the “virtual ground principle”, which

assumes that v+ = v−. If the potential difference between the two inputs

was not negligible, the output would saturate, as it did in the

comparator circuit. (Remember, the ideal op-amp has infinite gain.)

1. By the zero input current assumption:

ib = 0 and ia = −if (by KCL) (6)

2. At node v−:
vi − v−
Ra

= −vo − v−
Rf

3. Solving for the gain vo/vi gives:

vo

vi

= −Rf

Ra

4. Note that the gain is independent of R. Usually, R is set equal to

Ra.
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Inverting amplifier design

Design an inverting amplifier to increase the amplitude of a signal

by a factor of 2. Show the output waveform when

vi = 2.5 cos(2π3t) + 5.

−

+
vo

10kΩ

vi

10kΩ

20kΩ

+Vs

−Vs
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Inverting amplifer
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Figure 13: Draw in the output waveform vo(t).
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Non-inverting amplifier

−

+
vo

Ra

ia

R ib
vi

Rfif

1. By the zero input current assumption:

ib = 0, and ia = −if (7)

2. By the virtual ground principle:

v− = v+, so v− = vi

3. At node v− :
vi − 0

Ra

=
vo − vi

Rf
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4. Solving for the gain vo/vi gives:

vo

vi

= 1 +
Rf

Ra

5. Note, again, that the gain is independent of R. Usually, R is set

equal to Ra.

Non-inverting amplifier example

Suppose we set Ra = Rf = 10 kΩ, the op-amp power supply to ±15V
and that vi = 2.5 cos(2π2t) + 7.5. Plot the output voltage vo(t).
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Non-inverting amplifer example
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Figure 14: Draw in the output waveform vo(t).
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Differential amplifier

• The inverting and non-inverting op-amp configurations amplify
sources connected between the amplifier input and ground.

• In many cases, it is either impossible, undesirable or
inconvenient to connect one of the input signal leads to the

ground level of the amplifer circuit→ need differential amplifer.

Why?
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−

+
vo

ia

R1

va

ib

R1

vb

ic

R2

id R2

Figure 15: Differential amplifier configuration.
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Differential amplifier analysis

Consider the inverting and non-inverting inputs of the op-amp.

Assuming, as usual, that no current flows into either terminal we

have ia = −id and ib = ic. Thus:

(va − v−)
R1

= −vo − v−
R2

and (8)

v+ = vb
R2

R1 +R2

(9)

Now, v+ = v−. Eliminating these variables from the two equations

gives:

vo =
R2

R1

(vb − va) (10)

Note that both va and vb are potential differences with respect to

ground, but that vo is independent of the ground potential.
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Differential amplifier applications

Noise reduction

• Wires from the sensor to the amplifier pick up noise from the
environment.

• Often, this noise is induced more or less equally on both sensor
leads. When this is the case, an amplifier having a differential

input will cancel this noise.

The Wheatstone bridge

• Sensors which change in resistance or impedance in response to
the measured quantity are often placed in a Wheatstone bridge

configuration.

• Consider, for example, the cantilever load cell shown in Figure
16. Four strain gauges are placed on the cantilever. When the

cantilever experiences a force downward, the resistance of the

41



two strain gauges on the upper surface increases from R0 to

R0(1 +Ge), where G is a constant and e is the strain on the

sensor. Similarly, the resistance of the two gauges on the lower

surface decreases to R0(1−Ge).

• When the strain gauges are connected as shown in Figure 17, it
can be shown that vo = vsGe. This is independent of Ro - a

very desirable characteristic.

• We see that a differential amplifier is needed to amplify vo,
since this signal is the difference in potential between two

points, neither of which are connected to ground.

• In this example, the advantage of using a Wheatstone bridge is
that the changes in the value of R0 due to temperature cancel

out.

• As a result, greater measurement accuracy is achieved relative
to the case where a single element is used.
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Figure 16: Cantilever load cell to measure vertical forces. Two strain

gauges are placed on the upper surface, and two on the lower surface.

The strain is defined as e = ∆l/l, where l is the length of the strain

gauge before force is applied.
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R3 = R0(1 +Ge)

R4 = R0(1−Ge)R1 = R0(1 +Ge)

R2 = R0(1−Ge)

+
voVs

Figure 17: Whetstone bridge configuration. Vs represents the bridge

supply voltage and vo the bridge output voltage. The latter must

be amplified using a differential amplifier, as neither output lead can

be connected to the supply ground. The resistive elements are four

strain gauges placed on a cantilever.
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Capacitors and inductors

• So far, the circuits we have looked at do not contain
components that store energy.

• Resistors have real resistance and dissipate energy.

• Capacitors and inductors have imaginary resistance or

reactance and store energy.

• Capacitors store energy as an electric field.

• Inductors store energy as a magnetic field.
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Capacitors

• Capacitors store charge.

• A capacitor resists attempts to change the voltage across its
terminals.

• The amount of charge stored in a capacitor at a certain time is
proportional to:

1. Its capacitance value C (measured in farads)

2. The voltage across the capacitor terminals

Thus Q = CV

• A farad is the number of coulombs of charge a capacitor will
store for each volt applied across its terminals. (1 coulomb

= 6.24× 1018 electrons)
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Current through a capacitor

C
+

vc−

ic

Figure 18: Capacitor symbol and current conventions.

• Charge must move in or out of a capacitor to change the
voltage across its terminals.

• This charging current is given by:

ic = C
dvc(t)

dt

• ic has a negative value when the capacitor is discharging.
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Capacitors in AC circuits

Vs(t) = A sin(2πft)

ic

C
+
vc−

Figure 19: Capacitor in steady-state AC circuit.

• In Figure 19, vc(t) = Vs(t) so

ic(t) = C
dVs(t)

dt
= CA cos(2πft) = CA sin(2πft+ π/2)

The current through a capacitor lags the driving voltage by 90

degrees.
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Figure 20: Current through a capacitor driven by an AC voltage

source as shown in Figure 19. At t = 0, vc = 0 and the capacitor is

empty of charge. At this point, the inflow current is maximal. When

vc peaks, current flow stops since there is no change in vc to resist.

The subsequent fall of vc from its peak is resisted by an outflow

current. The existence of this current shows that the capacitor is

trying to stop its terminal voltage from falling.
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Inductors

• Inductors resist changes in the current flowing through them.

• Inductors do this by generating a voltage that opposes any
attempt to change the current flowing.

• This voltage is governed by the equation:

vl(t) = L
dil(t)

dt

where L is the inductance of the inductor (measured in henrys).
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Inductors in AC circuits

Is(t) = A sin(2πft)

il

L

+

vl

−

Figure 21: Inductor in steady-state AC circuit.

• In Figure 21, vl(t) = Vs(t) so

vl(t) = L
dIs(t)

dt
= LA cos(2πft) = LA sin(2πft+ π/2)

• The voltage across an inductor lags the current through it by
90 degrees.

• This means the current leads the voltage by 90 degrees.
• For the capacitor, the current lags the voltage by 90 degrees.

51



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

time (s)

am
pl

itu
de

i
l
 (A)

v
l
 (V)

Figure 22: Voltage across an inductor driven by an AC current source

as shown in Figure 21. Notice how the inductor tries to oppose

changes in the current il by developing a potential vl. Note how |vl|
is maximal at the zero-crossings of il when the rate of change of il

is maximal.
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Impedance and phasor analysis

The concept of impedance greatly aids the analysis of circuits

containing resistors, capacitors and inductors.

impedance = resistance + × reactance (11)

Z = R+ X (12)

• R represents the familiar real resistance of resistive elements

• X represents the imaginary resistance of capacitive and

inductive elements. Reactance is frequency dependent

resistance

• Z represents complex resistance, or impedance
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Impedance and phasor analysis

This representation is a convenient way of expressing

mathematically the phase leads and lags of reactive elements.

Most importantly, Ohm’s Law applies also to impedances.

• For capacitors: X = 1/ ωC = 1/ 2πfC

• For inductors: X =  ωL =  2πfL

• In phasor analysis, sinusoidal (AC) sources are presented as
complex phasor quantities.

• A real source producing Vs = A sin(ωt) is represented as:

Vs = A e ωt+π/2

• A real source producing Vs = A cos(ωt) is represented as:

Vs = A e ωt
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Impedance and phasor analysis

Z

+

V

−

I

Figure 23: Symbol for complex impedance element with current con-

ventions.

Ohm’s Law for impedences: V = IZ

Getting from phasors back to the real world:

• The amplitude of a voltage is given by: |V | =
√
V V ∗

• The amplitude of a current is given by: |I| =
√
II∗

• The magnitude of an impedance is given by: |Z| =
√
ZZ∗
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Phasor analysis example: high-pass filter

Vi(t)

Z1

+

voZ2

−

Figure 24: Simple high-pass filter

• Z1 = 1/ ωC1, Z2 = R2

• By voltage divider law:

vo = Vi
Z2

Z1 + Z2

= Vi
R2

R2 + 1/ ωC1

G =
vo
Vi
=

 ωC1R2

R2 ωC1 + 1
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Frequency response

• Note that the gain is a function of frequency.

• To look at the magnitude frequency response of this circuit
(gain as a function of frequency), we need to find the

magnitude of G:

|G| =
√
GG∗ =

√

ω2C2
1R

2
2

1 +R2
2ω

2C2
1
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Figure 25: Frequency response of high-pass filter with C = 1µF and

R = 1kΩ
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Phasor analysis example: tuned circuit

I(t) Z1

Z2

Z3

−

+

vo

Figure 26: Simple tuned circuit

• Z1 = 1/ ωC, Z2 = R, Z3 =  ωL
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Phasor analysis example: tuned circuit

• By Ohm’s Law and the rule for combining parallel impedances:

vo = IZ = I × 1
1

Z1
+ 1

Z2+Z3

= I
R+  ωL

(1− ω2LC) + ωRC

• Thus

|Z| =
√

R2 + (ωL)2

(1− ω2LC)2 + (ωRC)2
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Figure 27: Frequency response of tuned circuit. Here R = 1kΩ,

L = 100µH, C = 1nF, and the amplitude of I is 1A.

• The tuned circuit provides low impedance to signals with
frequencies close to 1/(2π

√
LC) = 15.7 kHz.

• Tuned or RLC circuits allow radios to tune to a specfic
frequency band by providing high impedance to unwanted

bands.
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Reading on capacitors, inductors, impedance and phasor

analysis

Reader pages 467-482, 488-497, 502-516.

Exercises

1. Problem 5.2, page 482.

2. Problem 5.3, page 482.

3. Figure 5.15, page 483. Find an expression for the circuit gain.

Make a rough plot of the frequency response.

4. Problem 5.8a, page 484.

5. Problem 7.7, page 523.

6. Problem 7.9, page 523.

7. Problem 7.11, page 524.

8. Problem 7.19, page 525.
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