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Abstract

For emission computed tomography (ECT) studies of
temporally static source distributions, well-known guidelines
exist for the number of resolution elements which may be
acceptably resolved in a reconstructed image, at a given
noise level. Owing to the incomplete angular-temporal
sampling in such ECT modalities as rotating camera dynamic
single photon ECT (SPECT), the acquired sinogram is
not a consistent representation of a Radon transform, and
consequently, no analogous bounds on the performance of
dynamic reconstruction algorithms may be derived from
Radon transform theory. Applying what we believe to be
the first spatiokinetic parameter estimation algorithm able
to simultaneously estimate both the geometry and kinetics
of multiple dynamic regions directly from inconsistent
projections, we establish empirical estimates for the number
of regions whose boundaries and time-activity curves (TAC’s)
may be simultaneously estimated to a specified degree of
accuracy at a given signal-to-noise ratio (SNR). Surprisingly,
we find that regional TAC recovery for a segmented annulus
myocardial phantom is relatively insensitive to noise at realistic
SNR’s and to a twofold increase in the number of resolution
elements. We conclude that errors in the recovered regional
TAC’s are due primarily to the poorly conditioned nature of the
spatiokinetic parameter estimation problem.

I. INTRODUCTION

Resolution versus noise characteristics for static ECT
imaging, where time-invariance of the radionuclide source
distribution is assumed, are useful guidelines in the design
of clinical studies. While well-developed Radon transform
inversion theory equips us with the analytical tools to
determine the limits on resolvability in the static case, the
non-linear problem of simultaneously estimating both the
underlying geometry and time-activity within a dynamic
source distribution is far more difficult to analyze. This is
due, in part, to the fact that resolvability is dependent on the
source configuration, the number of the dynamic regions,
and the nature of their time-activity evolution. In the case
where a distribution is imaged using rotating cameras which
cannot simultaneously measure all projections throughout the
duration of the study, reconstruction without the assumption of
a geometric and kinetic model for the regions is impossible.
Single camera, single rotation acquisition, is equivalent to
sampling the time-varying Radon transform along the plane
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shown in Figure 1 (for a 2D slice). Reconstruction of the
source distribution requires that the transform be sampled
sufficiently on %2 x R! over the entire duration of the
acquisition. The only way to determine the missing sample
points is through interpolation, which requires both a region
(or pixel) model, and models for the TAC’s of each region.
Consequently, resolvability estimates can only be derived
under the assumption of such a model.
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Figure 1: The sinotimogram, or sinogram of a time-varying

distribution, illustrates the fact that single rotating camera imaging
of dynamic sources is equivalent to sampling along a single plane in
Radon-time space. Without a spatiotemporal model of the sources,
interpolation in this space isimpossible.

In [1], we formulated an algorithm for joint spatial and
kinetic parameter estimation, which is a non-trivial extension
of the single dynamic region method of Chiao et al. to the case
where more than one dynamic region (model compartment) is
present among the imaged sources [2]. This algorithm fits a
multiple elliptical region model directly to measured projection
data. The time activity within each ellipse is the sum of the
responses of one or more single compartment models. This
model is particularly suited to ?°™Tc-teboroxime myocardial
studies. While it might fairly be argued that the ellipse is
a suboptimal shape for the approximation of the source
geometry, the fact that it has a simple analytic differentiable
Radon transform renders it useful for the characterization
of this problem. We also find in practice that the geometric
approximation error is small in relation to other sources of error
which contribute towards biases is the parameter estimates.



Here, we perform over 150 phantom data experiments using
this method in order to establish how well the TAC’s of dynamic
regions may be recovered as the number of regions and the SNR
changes. For the sake of convenience, we begin with a brief
summary of the method presented in [1].

[l. JOINT SPATIOTEMPORAL PARAMETER
ESTIMATION FOR MULTIPLE DYNAMIC
REGIONS

We begin by stating the core assumptions implicit in the
development of this algorithm:

1. Each modeled region is homogeneous.

2. We ignore the effects of attenuation within the body.
While this is a poor assumption in ECT, compensation
may be effected using an attenuation map obtained
through a transmission study.

3. The time-varying intensities of all dynamic regions
within the distribution are characterized by first order
tracer Kinetics.

4. Region boundaries are static throughout the imaging
process.

5. The blood input function is known.

6. Without loss of generality, we assume that all projection
data are acquired using a single-headed camera, which
performs a single rotation about the activity distribution
during the imaging process.

A. Model description

We employ the ellipse as spatial modeling element
since it possesses a simple and analytically differentiable
Radon transform. In this way, the entire model sinogram is
differentiable, allowing efficient employment of deterministic
optimization algorithms for the maximization of the likelihood
function.

A typical arrangement of such ellipses in the representation
of a myocardium containing several dynamic regions appears in
Figure 2.

The parameterized model sinogram which is fit directly to
the acquired sinogram, consists of the projections of N ellipses
E, (x,,) centered at (uy,, v,,) with orientation €2,, and respective
semimajor and semiminor axes a,, and b,,
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Each possesses a time-varying activity of the form:
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where i(t) is the compartmental input function, and ‘x’ denotes
convolution. The vector x,, contains the geometric and kinetic
parameters for the nth shape, and is defined as
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In order that we may restrict the orientation of one ellipse
with respect to those of its neighbors using simple interval
bounds, we parameterize the relative angle between successive
ellipses as a, such that:

n
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This parameterization allows us to prevent the string of
ellipses ‘jackknifing” upon itself, allowing ellipses to overlap
significantly. Since we wish to fit this model directly to the
ECT-derived sinogram, we require an expression for the Radon
transform of the dynamic ellipse model. The sinogram, as a
function of projection direction 6(t), radial coordinate s and
time ¢ is given by

N
(RE)(0(¢),s,t,x) = Z I(t)x

2anby, (a2 cos(@(t)Tan) + b2 sin(6(t) + 2,)) 7t x
V(a2 cos(8 + Q) + b2 sin(f + Q,,)—
(s — uy, cos(8) — vy, sin(6))?), 4)

where R represents the Radon transform operator applied to the
complete distribution E(x)
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Figure2: Typical elliptical region model

Physiological considerations provide us with bounds on
both the geometric and kinetic parameters. For application to
myocardial studies, we further constrain the spatial model to



force the constituent ellipses into a contiguous ring closed by
E . These constraints, and further details relating to the model
may be found in [1].

B. Inversion problem

A global-local hybrid optimization algorithm, which
imposes physiologically motivated interval constraints on all
parameters, is used to solve the least-squares problem:
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where S is the acquired sinogram, containing P projections
taken at time ¢ = t,, of Q) bins each. The centers of the discrete
bins are determined by the s, values.
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Even though the imposition of bounds on the values
of the kinetic parameters restricts the number of possible
solutions, we ideally desire a unique solution. This is not, in
general, possible as the sums of the responses of several single
compartment systems (convolved exponential sums) are not
uniquely parameterized in the presence of noise [3, 4]. By
finding an orthogonal basis set which, when convolved with the
blood input function, is able to accurately represent all TAC’s
consistent with the underlying physiology in a study, we may
find a ‘more unique’ description of each TAC. We find that
optimizing for the coefficients of this convolved orthogonal
basis, rather than a basis of decaying exponentials as in [5]
greatly improves the condition of the problem, reduces the
problem dimension and facilitates optimization of the objective
function.

Employing M orthogonal basis functions ., [l], where | =
0,1,..., L—1; isadiscrete time index, the dynamic projections
are given as
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replaces the parameterization in terms of the compartmental
parameters given in (3).
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[I1. MYOCARDIAL PHANTOMS

Figure 3 illustrates three ring configurations of ellipses
which constitute perfect realizations of the geometric model
used by the algorithm. These configurations, from the left
to the right of the figure, consist of 5, 8 and 11 segments
respectively. Since we expect fewer than 11 distinct dynamic
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Figure 3: Closed ring elliptical model ideal redizations.

regions to be present within the myocardium, this number of
shapes is chosen as the maximum number tested.

For greater realism, we generate our projection data not
from model, as has been done in Figure 3, but from the three
analogous segmented annular phantoms which appear in Figure
4,
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Figure 4: Annular phantoms used to generate simulated projection
data.

11 segment annular phantom

Sinograms generated from these phantoms are realizations
of Poisson processes with varying numbers of total counts. We
evaluate the algorithm over a wide range of detected count
values, from noise free conditions to as low as 1,000 detected
events.

V. PERFORMANCE METRICS

Conventionally, when compartmental models are fit
to Kkinetic data, it is the accuracy with which the kinetic
parameters are recovered that is used as metric of the
performance of the estimation algorithm. However, when the
compartmental model contains redundant parameters, as in the
present case, different sets of parameter values may produce
model responses whose differences may not be discernible in
the presence of noise. Consequently, we feel that the true test
of the viability of a kinetic parameter estimation algorithm is
its ability to accurately recover the regional TAC’s of dynamic
imaged distribution. We therefore propose the metric:
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where ¢,,[1] and é,[1] are the true and recovered TAC’s for
region n, respectively.

M,
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V. EXPERIMENTAL RESULTS

The first three experiments evaluated algorithm TAC
recovery in the absence of noise for the 5, 8 and 11 region
cases. The algorithm was then applied to 10 Poisson sinogram
realizations of each phantom at each of the count levels



1 x 105, 2.5 x 10%, 1 x 105, 1 x 10% and 1 x 10° detected
events.
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Figure 5: Typical spatiokinetic algorithm performance. Upper: True
and recovered TAC's for each region. See Figure 4 for region number
references. Lower: Initia ellipse placements before optimization are
shown (solid) versus optimized positions (+). This smulation was
performed at 1 x 10° detected counts.
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Figure 6 illustrates algorithm performance versus the
number of dynamic regions in the distribution, in terms of the
metric M,,,. Error bars are shown spanning the mean + one
standard deviation, and are staggered about the abscissa values
of 5, 8 and 11 for legibility. For convenience, the same data are
plotted with total detected counts as the abscissa in Figure 7.
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Figure 6: Error metric My, Versus number of dynamic regions within
distribution.

From consideration of Figures 6 and 7, it becomes apparent
that a decrease in the SNR over the range in question is far more
deleterious to the TAC estimates than an increase in the number
of regions from 5 to 11. We make the following additional
observations:

1. The increase in the TAC recovery error as the number
of regions is increased, is only significant in the 11
shape case at the very poorest SNR’s of 1 x 103 and
1 x 10* detected counts. Thus, in ™ Tc-teboroxime
clinical myocardial studies, where more than around
30, 000 counts typically originate from the myocardium,
it should be possible to resolve all regions sufficient in
size to be of physiological significance in a functional
sense. This assumes, however, that additional regions
are defined so as to sufficiently model non-myocardial
activity.

2. In the evaluation of most reconstruction algorithms, we
expect the algorithm to produce estimates with very
low error in the noise-free case. Here, we find that
performance in the absence of noise is by no means
perfect. This is indicative of just how poorly conditioned
the optimization problem (6) is. The surface of the
objective function contains so many local minima that
a global search algorithm must be used to generate
multiple start points for subsequent deterministic
optimization. In all tests presented here, the generation
of between 5 and 10 million initial parameter states was
required before the solution stabilized.
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Figure 7: Error metric M, Versus number of total detected sinogram
counts.

The mean computation time for the execution of a single
simulation study was 25.7 hours (Pentium 11 400MHz).

VI. DISCUSSION

Our experimental results suggest that neither noise (at
realistic levels) nor the number of regions (up to the maximum
of 11 dynamic regions) included in the phantom significantly
degrade the results of joint spatiokinetic estimation. Rather,
the intrinsic difficulty in extricating individual regions and
their time activities directly from projections limits estimation
accuracy. As a result of this ill-conditioning, TAC’s and region
boundaries cannat, in general, be recovered exactly (in a finite
amount of time), even when the estimation is performed under
noise-free conditions. This is true even when the parameterized
dynamic ellipses are fit to an elliptical ring phantom which is
an exact realization of the model. Figure 8 illustrates such a
failure to find the global minimum in a noise-free case, where a
ring of 11 ellipses is fit to the 11 ellipse ideal model realization
shown in Figure 3.

Our results suggest that multiregion joint spatial and Kinetic
reconstruction is feasible for obtaining kinetic estimates and
dynamic region segmentations to within a useful degree of
accuracy. The effects of realistic imaging conditions need
to be established before these results can be translated into
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Figure 8: Even when the model is fi t to a sinogram which is the set
of projections of an exact redization of the model, under noise-free
conditions, the global minimum may not be encountered. In this
11 region case, regions 9 and 10 are merged giving a sub-optimal
solution. The agorithm is unable to fi nd the global minimum even
after 10 million invocations of the local optimization algorithm from

stochastically generated starting points in the parameter space. This
failure is due to the poor condition of the objective function surface.

practical feasibility guidelines. Future work should concentrate
on the development of constrained geometric models for other
functional anatomic structures so that spatiokinetic modeling
of the entire field-of-view may be effected in dynamic ECT.
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