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Topics to be covered

1. Definition of several important 2D functions

2. Important 2D Fourier transform pairs

3. Some 2D Fourier transform properties and theorems

4. Separability of the n-D Fourier transform

5. Sampling in 2D

6. Aliasing in 2D

7. 2D low-pass filters in Fourier domain

8. 2D high-pass filters in Fourier domain

9. Reconstruction filters
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Reading

• Gonzalez and Woods pp. 147-191, pp. 208-213.

Optional advanced reading

• Jain pp. 132-150, 244-251.

• Bracewell pp. 346-364.
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Definition of important 2D functions

Recall for 1D:

rect

(

x

X

)

=







1, |x| < X/2

0, |x| > X/2

In 2D we have:

rect

(

x

X
,
y

Y

)

, rect

(

x

X

)

rect

(

y

Y

)
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Example rect function
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Definition of important 2D functions: Rectangular

function

A radial rectangular function in 2D is defined as:

rect

(

r

R

)

,







1, |r| < R

0, |r| > R

where:

r =
√

x2 + y2
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Example radial rect function with r =
√

x2 + y2
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Definition of important 2D functions: Sinc function

Recall in 1D:

sinc(x) ,
sin(πx)

πx

A special property of the 1D sinc function is that it contains all

frequencies equally up to a cutoff.

In 2D:

sinc(x, y) , sinc(x) sinc(y) =
sin(πx)

πx

sin(πy)

πy
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Example 2D sinc function
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Definition of important 2D functions: Jinc function

The jinc function is defined as:

jinc(r) ,
J1(πx)

2x

where J1 is a Bessel function of the first kind. A Bessel function of

the nth kind is a solution of the differential equation:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

• A special property of the 2D jinc function is that it contains all

2D frequencies equally up to a cutoff.

• As we will see later, the jinc function is the Fourier transform

of the radial rect function.
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Example jinc function with r =
√

x2 + y2
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Comb of impulses

A comb of impulses is a periodic train of impulses:

comb(x/X, y/Y ) ,
∞
∑

k=−∞

∞
∑

l=−∞

δ(x− kX, y − lY )
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Useful Fourier transform pairs

Space domain Frequency domain

δ(x, y) 1

δ(x− x0, y − y0) e±2πx0ue±2πy0v

rect
(

x
A
, y
B

)

AB sinc(Au,Bv) = AB sin(πuA)
πuA

sin(πvB)
πvB

rect(r/R), r =
√

x2 + y2 R jinc(Rρ), ρ =
√
u2 + v2

comb(x/X, y/Y ) XY comb(uX, vY )

cos(2π(uox+ v0y))
1
2
(δ(u+ u0, v + v0) + δ(u− u0, v − v0))

sin(2π(uox+ v0y))  1
2
(δ(u+ u0, v + v0)− δ(u− u0, v − v0))

e−π(x2+y2) e−π(u2+v2)
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Dual Fourier transform pairs

Space domain Frequency domain

1 δ(u, v)

e∓2πuoxe∓2πv0y δ(u− u0, v − v0)

AB sinc(Ax,By) rect
(

u
A
, v
B

)

R jinc(rR), r =
√

x2 + y2 rect(ρ/R), ρ =
√
u2 + v2

UV comb(Ux, V y) comb(u/U, v/V )

Can we derive expressions for Fourier transform pairs for the DFT? Explain.
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Some important Fourier transform properties

Spectrum |F (u, v)| =
√

R(u, v)2 + I(u, v)2

(magnitude) R(u, v): real part of F (u, v)

I(u, v): imaginary part of F (u, v)

Phase φ(u, v) = arctan
(

I(u,v)
R(u,v)

)

Conjugate symmetry F (u, v) = F ∗(−u,−v)
|F (u, v)| = |F (−u,−v)|

Duality If g(x, y) f(u, v)

then f(x, y) g(−u,−v)
Translation f(x± x0, y ± y0) F (u, v)e±2π(ux0+vy0)

f(x, y)e∓2π(u0x+v0y)  F (u± u0, v ± v0)

Differentiation ∂
∂xf(x, y)  2πuF (u, v)
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Translation property in space

Notice that a translation of f(x, y) changes only the phase of

F (u, v):

f(x± x0, y ± y0) F (u, v)e±2π(ux0+vy0)

The magnitude spectrum is invariant under translations of the

image.
∣

∣

∣
F (u, v) e±2π(ux0+vy0)

∣

∣

∣

=
√

F (u, v)e±2π(ux0+vy0) × F ∗(u, v)e∓2π(ux0+vy0) = |F (u, v)|

Can a linear shift invariant system move an image f(x, y) around

real space? .

Can it move its transform F (u, v) around frequency space?
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Translation property in frequency

A translation in frequency is equivalent to a modulation of the

space signal by a complex exponential:

f(x, y) e∓2π(u0x+v0y)  F (u± u0, v ± v0)

We can get some intuition for this by expanding the complex

exponential:

f(x, y) e∓2π(u0x+v0y)

= f(x, y)
[

cos(2π(u0x+ v0y)∓  sin(2π(u0x+ v0y)
]

Now we examine what happens to a single sinusoid within f(x, y)

when we perform a translation of its FT. For simplicity we choose

the cosine function:

g(x, y) = cos(2π(2x+ 2y))
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Translation property in frequency

This function has the FT:

G(u, v) =
1

2

[

δ(u+ 2, v + 2) + δ(u− 2, v − 2)
]

We decide to translate G(u, v) by u0 = 1 and v0 = −3:

G′(u, v) = G(u− 1, v + 2) =
1

2

[

δ(u+ 1, v − 1) + δ(u− 3, v − 5)
]

.

Now we see what happens at the other end of the transform pair:

g′(x, y) = cos(2π(2x+ 2y)) e 2π(−1x+(−3)y)

=
1

2

[

e 2π(2x+2y) + e−2π(2x+2y)
]

e 2π(−1x−3y)

=
1

2

[

e 2π(x−y) + e−2π(3x+5y)
]
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Translation property in frequency

As expected, the frequency of the cosine is changed by the

translation in the Fourier domain. The function g′(x, y) is a

complex function, since its FT G′(u, v) is not conjugate symmetric.

An expression for g′(x, y) can also be obtained using the

well-known multiplication formulae:

sin(α) cos(β) =
1

2

[

sin(α− β) + sin(α+ β)
]

sin(α) sin(β) =
1

2

[

cos(α− β)− cos(α+ β)
]

cos(α) cos(β) =
1

2

[

cos(α− β) + cos(α+ β)
]

and Euler’s identity:

e±θ = cos(θ)±  sin(θ)
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Rotation property

x = r cos(θ) u = ρ cos(φ)

y = r sin(θ) v = ρ sin(φ)

f(r, θ + θ0)® F (ρ, φ+ θ0)

This tells us that a rotation of a 2D function by θ0 will rotate the

Fourier transform by the same angle and in the same

direction (i.e., clockwise or counterclockwise).
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Convolution theorem

f(x, y) ∗ h(x, y)  F (u, v)H(u, v)

f(x, y)h(x, y)  F (u, v) ∗H(u, v)

• The convolution theorem tells us that the output of a linear

shift invariant system can be computed via multiplication of

the transforms of the point-spread function and the input

image. Taking the inverse transform of the result gives the

output of the system.

• The dual transform pair (sometimes called the multiplication

property) tells us that if we multiply two images, their Fourier

transforms are convolved with each other.
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Separability property

This extremely important property allows us to calculate Fourier

transforms of any dimension using the one dimensional transform.

F2

{

f(x, y)
}

=

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e− 2π(ux+vy)dx dy

=

∫ ∞

−∞

e− 2πux
∫ ∞

−∞

f(x, y) e− 2πvy dy dx

=

∫ ∞

−∞

e− 2πuxF (x, v) dx

= F (u, v)
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Separability property for DFT

The separability property applies also to the DFT. Consider the M

column × N row image f [m,n]:

DFT2

{

f [m,n]
}

=

M−1
∑

m=0

N−1
∑

n=0

f [m,n] e−2π(km/M+ln/N)

=
M−1
∑

m=0

e−2πkm/M
N−1
∑

n=0

f [m,n] e−2πln/N

=

M−1
∑

m=0

e−2πkm/MF [m, l]

= F [k, l]

= DFT columns

1

{

DFT rows

1

{

f [m,n]
}}

It is easy to show that the separability property extends to any dimension.
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Recipe for 2D DFT

1. Transform the M rows using an N point 1D DFT engine.

2. Transform the N columns of the result using an M point 1D

DFT engine.

Recipe for 3D DFT

Consider an image of dimension n1 × n2 × n3.

1. Transform the n1 × n2 vectors parallel to the n3 axis using an

n3 point transform.

2. Transform the n2 × n3 vectors parallel to the n1 axis of the

result of (1) using an n1 point transform.

3. Transform the n1 × n3 vectors parallel to the n2 axis of the

result of (2) using an n2 point transform.

Extension to higher dimensions is straightforward.
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Sampling in 2D

• Imagine we are in a plane over the Golden Gate bridge and we take
a photo.

• Our digital camera is set to sample the scene at N ×M =

1280× 960 pixels.

• Let us denote the scene as f(x, y) and define the width of the CCD
to be 1 unit. The height is then 0.75 units.

• We assume that the pixels on the CCD are square.

• The sampling frequency in the x direction is:

us = 1280 samples/1 distance unit

In the y direction it is:

vs = 960 samples/0.75 distance units

= 1280 samples per distance unit = us

25

2D sampling
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2D sampling

• The sampling theorem tells us that the highest frequency that

will be present in our digital image will be:

• The sampling period is 1/us = 1/vs = 1/1280 distance units.

• Our sampled image is given by:

fs(x, y) = f(x, y)×
∞
∑

k=−∞

∞
∑

l=−∞

δ(x− k/1280, y − l/1280)

• The image fs(x, y) on the CCD is captured by an analog to

digital converter, and becomes a 2D array of numbers f [m,n].

• The scene f(x, y) has a Fourier transform F (u, v). What is the

highest frequency present in F (u, v)?

• What is the FT of fs(x, y)?
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Sampling in 2D

• Taking the FT of fs(x, y) and using the multiplication property

of the FT we get:

Fs(u, v) = F (u, v) ∗
∞
∑

k=−∞

∞
∑

l=−∞

δ(u− 1280k, y − 1280 l)

So, Fs(u, v) is just F (u, v) rubber-stamped all over the u-v

plane at intervals of 1280 cycles/distance unit, the sampling

frequency.
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2D sampling

The 9 periods of the log magnitude spectrum of Fs(u, v) nearest the origin are:
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The “rubber-stamp” is enclosed in a dotted line. The dashed lines mark the

multiples of the sampling frequency that occur within the area plotted. The center

of the stamp has been applied at the intersections of these lines.
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2D sampling

• Now what happens if we take the DFT of the 2D array f [m,n]?

• Taking the DFT is equivalent to sampling the spectrum

Fs(u, v) at a spacing of us/N = 1280/1280 = 1 cycle/distance

unit in the u-direction and vs/M = 1280/960 = 4/3

cycles/distance unit in the v-direction.

• This can be expressed as:

F [k, l] = Fs(u, v)×
∞
∑

k=−∞

∞
∑

l=−∞

δ(u− kus/N, v − lvs/M)

• Taking the inverse FT gives:

fp(x, y) = fs(x, y) ∗
∞
∑

m=−∞

∞
∑

n=−∞

δ(x− nN/us, y −mM/vs)
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Sampling in 2D

• Thus, the function that the DFT will really give us the

spectrum of is not fs(x, y) or f(x, y), but fp(x, y), which is

periodic.

• It repeats every N/us = 1 distance units along the x-axis and

every M/vs = 960/1280 = 0.75 distance units along the y-axis.
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2D sampling

The 9 periods of fp(x, y) nearest to the origin are:
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2D sampling

• When we apply the 2D DFT to the array of numbers f [m, n], we get an

array of the same size F [k, l]. We must always remember that this is

actually the first period of the transform of fp(x, y).

2

4

6

8

10

12

14

16

18

log |F(k,l)|

cycles / distance unit

cy
cl

es
 / 

di
st

an
ce

 u
ni

t

−600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

600

33

Axes of the 2D DFT

• We always need to put meaningful axes of images of the DFT.

• The frequencies corresponding to each sample along the k axis begin
at −us/2 = −640 and increase in steps of us/N = 1280/1280 = 1
cycle/distance unit until (us/2− us/N) = 639 cycles / distance unit,

is reached.

• For the the l axis, the corresponding frequencies begin at
−vs/2 = −640 and increase in steps of vs/M = 1280/960 = 4/3

cycles/distance unit until

(vs/2− vs/M) = 1280/2− 1280/960 = 638 2
3
cycles / distance unit,

is reached.

NOTE: When we are examining plots of the DFT, we will

always assume that the DFT has been shifted so that zero

frequency is at the center.

34

Windowing in 2D

• We can minimize the contribution of edge effects to the DFT of

an image my multiplying the image by a window function.

• A 2D window can be made from a 1D window by taking the

outer product of two 1D window vectors.

• Let wN represent an N point 1D window vector.

• Let wM represent an M point 1D window vector.

• If our image is N columns × M rows, then the 2D window will

be given by:

WN×M = wMw
T
N
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Windowing in 2D

• For example, a 2× 3 Hamming window is formed as follows:

W2×3 =









0.08

1

0.08









[

0.08 0.08
]

=









0.0064 0.0064

0.0800 0.0800

0.0064 0.0064









Note: Not all 2D windows can be created from 1D windows.
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Windowing in 2D

The 2D Hamming window W1280×960 is applied to a periodically

extended version of f [m,n]:
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Windowing in 2D
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Left: Spectrum with rectangular window.

Right: Spectrum after Hamming window applied.

Note: The wideband vertical and horizontal stripes in the DFT are attenuated.

These are directly related to the vertical and horizontal interperiod

discontinuities, respectively. The oblique wideband spectral feature (due

mainly to the bridge) is retained.
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Maximum sampling rate in an image with square pixels

• When we sample a signal, the sampling theorem tells us we

must sample at a rate higher than twice the highest frequency

component present in the signal.

• Thus, we need to sample the highest frequency sinusoid slightly

more than twice per period, or higher.
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1D signals sampled slightly above Nyquist rate
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In all 4 cases, the signal is sampled slightly more than twice per period.
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Maximum sampling rate in an image with square pixels

In 2D, we must also sample the highest frequency component more than

twice per period. We have a lot more flexibility though:
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Because a 2D sinusoid does not vary along lines perpendicular to the direction

it is traveling, we may sample it anywhere along such a line. The sampling on

the right is just as good as that on the left, for this sinusoid.
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Maximum sampling rate in an image with square pixels

• As a consequence, the maximum frequencies present in an image
sampled using square pixels occur along the diagonals.

• A digital camera is thus able to capture the largest amount of fine
detail along the diagonals.

• If an image contains N = 1280 columns and M = 980 rows, and we

define the width of the image to be 1 distance unit, then the highest

frequency present in the image is:

ρmax =
√

(us/2)2 + (vs/2)2 =
√

6402 + 6402 = 905.1 cycles/distance unit

and the highest frequency sinusoids that can be sampled are:

cos(2πρmax (x± y) + φ)

where ρmax = 905.10 cycles / distance unit.
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Maximum sampling rate in an image with square pixels

Example: Below we have a 32× 32 pixel image. Defining an image side
as equal to 1 distance unit, we have sampling frequencies of us = vs = 32

cycles / distance unit. The image contains:

cos(2π13(−x+ y))

which has a frequency of magnitude:

ρ =
√

132 + 132 = 13
√
2 ≈ 18.3848

Note that this frequency is higher than us/2 and vs/2. However, since

it is less than ρmax = 16
√
2, and travels along the major diagonal, it is

properly sampled in a 32× 32 image
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Maximum sampling rate in an image with square pixels

The image is shown along with its magnitude DFT. Note the

spectral peaks near (u, v) = (−13, 13) and (13,−13).
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Aliasing in 2D

• Aliasing occurs when an image is sampled at a frequency under

twice that of the highest frequency component present.

• Aliasing is explained completely by the relationship between

the sampling equation:

fs(x, y) = f(x, y)×
∞
∑

k=−∞

∞
∑

l=−∞

δ(x− k/us, y − l/vs)

and its transform:

Fs(u, v) = F (u, v) ∗
∞
∑

k=−∞

∞
∑

l=−∞

δ(u− kus, y − lvs)
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2D aliasing example

• We begin with the “high frequency” image used in the previous

example that had a single ρ = 13
√
2 cycles / distance unit

component.

• We downsample the image by taking every second sample

along both axes.

• The new 16× 16 image can contain components with a

maximum frequency of ρ < ρmax = 8
√
2.

• Because 13
√
2 ≥ 8

√
2, we expect the high frequency component

to be aliased and appear as a lower frequency component.

• A sinusoid with horizontal frequency u0 and vertical frequency

v0 will appear (if aliased) to have a horizontal and vertical

frequencies of (us − u0) and (vs − v0), respectively.
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2D aliasing example

• Below is the downsampled image and its magnitude spectrum:
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• We can clearly see that the frequency of the bands in the image

is lower than that of the original image.

• Is aliasing a linear or a non-linear effect?
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2D aliasing example

• How do we get a better understanding of what has happened? We will

execute the instructions given by the FT of the sampling equation i.e.,

stamp the spectrum of the original image throughout frequency space by

convolving the original spectrum with the comb function shown below:
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2D aliasing example
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• The dotted lines enclose the 1st period of the spectrum of the
16× 16 downsampled image.

• This is the same spectrum that we found by DFTing the
downsampled image in the previous slide.

• Conclusion: Aliasing is a predictable artifact of undersampling.
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Filtering in the frequency domain

We will consider only frequency domain filters associated with linear

spatially invariant systems.

f(x, y) g(x, y)h(x, y)

According to the convolution theorem, such filters can be implemented

in continuous Fourier space as:

G(u, v) = H(u, v)F (u, v)

and in terms of DFTs as:

G[m,n] = H[m,n]F [m,n]
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Filtering in the frequency domain

Advantages:

1. Much faster than convolution for large problems (when FFT is

used to implement the DFT).

2. Implementation of filters with specific cut-off frequencies is

more direct, flexible and intuitive.

3. Easily implemented in analog form using lenses.

Disadvantages:

1. Requires assumption of periodicity in space. Consequently, the

effects of edge discontinuities must be considered.

2. Filter must be conjugate symmetric or PSF will not be real.
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The ideal low-pass filter

For rectangular images, the ideal lowpass filter is given by:

H(u, v) = rect

(

u

2U
,
v

2V

)

This filter has a cutoff frequency of (U, V ).

−U
 0

 U
−V

 0
 V

0

0.5
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H(u,v) = rect(u/2U, v/2V)

v

H
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The ideal low-pass filter

The ideal LPF has a point-spread function given by:

h(x, y) = 4UV sinc(2Ux, 2V y)

−1/(2U)   0    1/(2U)−1/(2U) 1/(2U)

4UV

x

4UV sinc(2Ux, 2Vy)

y x

y

4UV sinc(2Ux, 2Vy)

−1/(2U)    0    1/(2U)

 1/(2U)

    0  

−1/(2U)
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The ideal low-pass filter: Example

We will apply an ideal low-pass filter to image f [m,n] having horizontal

and vertical frequency cut-offs at 0.025 and 0.45 of the Nyquist rate,

respectively.
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What can we expect the filtered image g[m,n] to look like?
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The ideal low-pass filter: Example

The filter and its PSF:
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Compare the sinc components in the x and y directions.
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The ideal low-pass filter: Example

The filtered image g[m, n]:
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What do you notice about the smoothness of features in the x and y directions?

What do we see “ringing” near the strut?
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The Butterworth low-pass filter

The transfer function of the 2D Butterworth filter is given by:

H(ρ) =
1

1 + (ρ/ρc)
2q

where ρ =
√
u2 + v2, ρc is the cut-off frequency and q is the order of the

filter.
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The Butterworth low-pass filter: Example

We will apply a Butterworth low-pass filter of order q = 3 to image

f [m,n]. The filter has a radial cut-off at 0.025 of the horizontal Nyquist

rate. Below are the PSF and DFT of the filter:
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The Butterworth low-pass filter: Example

The resulting image g[m, n]:
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How does the Butterworth PSF compare to the 2D sinc?

How does the image compare that obtained using the ideal filter?
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The Gaussian low-pass filter

The transfer function of the 2D Gaussian filter is given by:

H(ρ) = e−ρ
2/2ρ2c

where ρ =
√
u2 + v2 and ρc is the cut-off frequency.
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The Gaussian low-pass filter

The PSF is also a 2D Gaussian:

h(r) = 2ρ2
c e
−2ρ2cr

2

where r =
√

x2 + y2.
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The Gaussian filter: Example

We will apply a Gaussian high-pass filter to image f [m, n]. The filter has a

radial cut-off at 0.15 of the horizontal Nyquist rate. We make a high-pass filter

from the low-pass filter prototype using:

H(u, v) = 1− e−ρ
2/2ρ2c

Below is the DFT of the filter:
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The Gaussian high-pass filter: Example

The resulting image g[m, n] is:
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Note how high-pass filtering enhances edges, but makes smooth regions

invisible.
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Buliding bandpass and bandstop Fourier domain filters

Let Hl(u, v) denote a prototype lowpass filter. Then:

• Hh(u, v) = 1−Hl(u, v) is a highpass filter.

• Hbp(u, v) = Hh(u, v) +Hl(u, v) is a bandpass filter if the lowpass

cutoff is larger than the highpass cutoff.

• Hbs(u, v) = 1−Hl1(u, v) +Hl2(u, v) is a bandstop filter if the cutoff

of Hl1 is larger than that of Hl2.
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Butterworth bandstop filter: Example

We will try to remove the 80 cycles / 1280 pixel sinusoidal noise from the

image f [m,n] using two 10th order Butterworth filters:
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Butterworth bandstop filter: Example

• We choose filter cutoffs by finding the radius of 80 cycle noise in an
image sampled at 1280 cycles / image width:

ρc = 80
√
2 = 113.14

• Based on this value of ρc, we choose ρl1 = 153.14 and ρl2 = 73.14
giving a stopband of width 80 cycles.
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Butterworth bandstop filter: Example

The filter transfer function is:
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Butterworth bandstop filter: Example

The resulting image and its spectrum appear below.
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The ideal reconstruction filter

• We sometimes need to convert digital images to continuous analog
images.

• For example, the discrete image on the LCD display inside a
computer projector must be converted to a continuous image on the

projection screen. Failure properly reconstruct the continuous image

will lead to a projected image that appears “blocky”.

• To reconstruct a continuous image, we must use an analog filter to
retain only a single period of the Fourier transform of the discrete

image.

• First, we will review reconstruction filtering in 1D.
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Reconstruction filtering in 1D

Reconstruction begins with the discrete signal f [n]. The first stage of the

ideal digital-to-analog converter produces voltage values proportional to

the sample values as fa(t).
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Reconstruction filtering in 1D

• This process is described by the expression:

fa(t) =

∞
∑

n=−∞

f [n] δ(t− n/us)

where us is the original sampling frequency of the signal.

• Because of its discontinuities, the signal fa(t) has infinite
bandwidth. If the discrete signal was sampled at us Hz, then by

filtering out all frequency components of fa(t) greater than or equal

to us/2, the original bandlimited signal can be obtained.

• A filter that will achieve this is the ideal lowpass filter with cutoff
frequency us/2:

H(u) =
1

us
rect(u/us)
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Reconstruction filtering in 1D

• Taking the inverse Fourier transform of this filter yields the impulse
response:

h(t) = sinc(ust) = sinc(t/Ts)

where Ts is the sampling period.

• Application of this filter gives the reconstructed signal fr(t):

fr(t) = fa(t) ∗ sinc(t/Ts)

=

∫ ∞

−∞

∞
∑

n=−∞

f [n] δ(τ − nTs) sinc((t− τ)/Ts) dτ

=

∞
∑

n=−∞

f [n] sinc(t− nTs)
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Reconstruction filtering in 1D

The sinc filter h(u) is called the ideal interpolation filter. What special

properties of the sinc function make it ideal for interpolating sampled

signals?

1.

2.

3.

Can this filter be implemented digitally?

Is it practical for use in, say a CD player?
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Reconstruction filtering in 1D

• The left figure shows the scaling and “stamping” of the sinc interpolation

function before the sum is carried out.

• The right figure shows the result of the convolution of fa(t) with the

interpolation function.
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Reconstruction filtering in 1D

• Reconstruction filters must be implemented as analog filters.
Computers can only input and output discrete digital signals.

• The circuit below shows a 3 pole Butterworth reconstruction filter
for use in a digital-to-analog converter:

Schematic diagram courtesy Maxim Integrated Products.
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Reconstruction filtering in 2D

Reconstruction in 2D is completely analogous to 1D. For rectangular

images, the ideal reconstruction filter is the ideal lowpass filter:

H(u, v) =
1

usvs
rect

(

u

us
,
v

vs

)

that has the PSF

h(x, y) = sinc(us x, vs y)

This filter selects out the period of the DSFT closest to the origin.

The 2D sinc function:

1. Contains all frequencies equally up to us/2 in the x direction and

vs/2 in the y direction.

2. Has a value of unity at the origin.

3. Has zero crossings at every non-zero multiple of the sampling

periods.

It is the ideal interpolation function for rectangular images.
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Reconstruction filtering in 2D
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The dotted square endloses the part of the DSFT retained by the ideal

reconstruction filter (us = vs = 1280 cycles / image width). This is F (u, v), the

Fourier transform of the original continuous signal.
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Reconstruction filtering in 2D

Most real images are acquired using circular lenses. As a result, all

spatial frequencies are sampled equally up to us = vs = ρs.

Consequently, a radially symmetric reconstruction filter:

H(ρ) =
1

ρs
rect

(

ρ

ρs

)

that has the PSF

h(r) = jinc(ρsr)

is sufficient. The jinc function:

1. Contains all radial frequencies equally up to ρs/2 in all directions.

2. Has a value of ≈ 0.785398 at the origin.

3. Has successive null circles at radii of ≈ 1.220, 2.233, 3.239, . . .

This filter is sufficient for the reconstruction of radially bandlimited

rectangular images (i.e., uniform resolution images), but is not

theoretically ideal.
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Reconstruction filtering in 2D

• 2D reconstruction filters must be implemented as analog filters, as was the case in 1D

• Lens systems perform the analog filtering. The FT of the scene (left, imagine this might be

the digital projector LCD) appears in the focal plane of the lens. A lowpass filter (opaque

sheet with transparent central region) may be employed as reconstruction filter. The

reconstructed image is projected onto the rightmost screen.
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