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Topics to be covered

1. Review of linear time/shift invariant systems

2. Review of discrete convolution in 1D

3. 1D convolution as a matrix operation

4. Convolution in 2D

5. 2D convolution as a matrix operation
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Reading

1. Gonzalez and Woods pp. 116-123.

Additional reading

1. Oppenheim and Schafer pp. 8-29.

2. Jain pp. 13-15, 26, 49-54.
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Linear shift invariant systems

Continuous space:

f(x) g(x)h(x)

g(x) = f(x) ∗ h(x)

Discrete space:

f [n] g[n]h[n]

g[n] = f [n] ∗ h[n]
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Properties of Linear Shift Invariant (LSI) systems

1. The system is completely characterized by its impulse

response h(x).

2. Principle of superposition (POS) holds. Thus if:

f(x) = f1(x) + f2(x)

and we feed f1 and f2 through the system separately

g1(x) = h(x) ∗ f1(x)

g2(x) = h(x) ∗ f2(x)

then

g(x) = h(x) ∗ f(x) = g1(x) + g2(x).

3. The frequency components in the input signal are merely

scaled by the system - no frequencies are present in the output

that weren’t present in the input.
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Discrete convolution by superposition
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Discrete convolution by superposition
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Consider f [n] as the sum of shifted and scaled impulses:
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Convolution by superposition

Each fi[n] is fed into the system separately:

fi[n] gi[n]h[n]

The outputs gi[n] are then summed:

gi[n] g[n]
∑

i
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Convolution by superposition:
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“Rubber stamp” convolution recipe:

1. Initialize partial result g′[n] to zero.

2. Make a rubber stamp out of h[n]. This is the point spread function

(PSF). It is going to “spread out” each impulse (point) in f [n].

3. Place the rubber stamp’s n = 0 point (origin) on impulse f [0].

4. Scale (multiply) the entire stamp by the value f [0].

5. Add the result to g′[n].

6. Place rubber stamp at f [1]. Scale by f [1]. Add result to g’[n].

7. Repeat for all n at which f [n] is defined.

8. When done we have: g[n] = f [n] ∗ h[n] = g′[n].

Because of “point spread” at the ends of f [n], the length

of g[n] is always M + N − 1, where M is the length of f [n]

and N is the length of h[n].
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Formalization

Discrete convolution in 1D:

g[n] =

∞
∑

n′=−∞

f [n − n′]h[n′]

In our example:

g[3] =

∞
∑

n′=−∞

f [3− n′]h[n′]

= 0 + . . .+
n′=3
∑

n′=−1

f [3− n′]h[n′] + . . .+ 0

= f [4].h[−1] + f [3].h[0] + f [2].h[1] + f [1].h[2] + f [0].h[3]

= 0 + 21 + 8 + 24 + 0

= 53
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1D convolution as a matrix operation
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Does this make sense? Check example:

g[3] = f [3].h[0] + f [2].h[1] + f [1].h[2]

Matrices with constant elements along diagonal and subdiagonals

are termed Toeplitz matrices.
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2D linear shift invariant systems

f [m, n] g[m, n]h[m, n]
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2D convolution kernel

h =
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Note: Our convention is to place the image origin at the bottom left of the

matrix.
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Discrete 2D convolution by superposition
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2D discrete convolution example (rubber stamp method)

Size of matrix g: (Nf + Nh − 1)× (Mf + Mh − 1) = (4× 5)
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Note: Only the numbers to be filled in are fully determined the

terms shown here. How many matrices must be summed to give

the full convolution?

Can we start the convolution at any point?
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Formalization

Discrete convolution in 2D:

g[n, m] =
∞
∑

m′=−∞

∞
∑

n′=−∞

f [m − m′, n − n′]h[m′, n′]

Reminder: The convolution operation is commutative:

g = f ∗ h = h ∗ f

and distributes over addition:

h ∗ (f1 + f2) = +
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2D convolution example: smoothing a noisy image

Given noisy image f :

Noisy image of trees
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Choose a smoothing kernel h:
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/256

How far must two pixels be apart for one to have no effect on the

value of the other after filtering?

Why do we divide all elements of the kernel by 256?
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2D convolution example: smoothing a noisy image

Surface plot of kernel:
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21

2D convolution example: smoothing a noisy image

Filtered image:

Image of trees after low−pass filtering
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2D convolution as a matrix operation

To show how 2D convolution can be expressed as a matrix

multiplication, we must reorder an image into vector form.

Row ordering:
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where fi is the (i + 1)th row of f .
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2D convolution as a matrix operation

Similarly if:
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Define hi as the (i − 1)th row of h.
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2D convolution as a matrix operation

Define:
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Also

H−1 = 0, H2 = 0

H0 and H1 are both Toeplitz matrices.
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2D convolution as a matrix operation

The matrix operation equivalent to 2D convolution is then:

g =


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Note: The matrix matrix H is termed “doubly Toeplitz”:
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2D convolution as a matrix operation: example
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Formalization

Let the dimension of f be Nf rows by Mf columns. Then

gn =
N−1
∑

n′=0

Hn−n′ fn′

The length of gn (a row in the output image) is (Mf + Mh − 1).

Therefore, the size of Hn is (Mf +Mh − 1)× Mf . Hn is a Toeplitz

matrix of this size defined completely by its first column, which is:
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Why express convolutions in matrix form?

• Because we can use powerful tools of linear algebra such as the

inverse of a matrix to solve many image processing problems.

• Because it will lead to great insight into the power of the

Fourier transform to make reconstruction and restoration of

large images feasible.
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