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Introduction

e Many physiological processes are readily described using linear

first-order compartment models.

e The output of such models may be represented as the
convolution of a forcing function ¢(¢) with an exponential

kernel:
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Single compartment model tracer TAC examples
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Modeling first-order systems

Often the observed quantity ¢(t) is comprised of the sum of the
responses of several first-order systems:

Ot) = i(t) x D kK e T, (1)

For example, the concentration vs. time curve ¢(¢) might
represent the superposed responses of several single

compartment models describing kinetics of a tracer
Parameter estimation problem:

Fit models of the form (1) to sets of measured data.




Complications

It is generally not possible to find unique sets of parameters.

Even when uniqueness conditions are met, parameters are
generally extremely sensitive to noise within the data.

“Excessive accuracy” is required even in noise free situations.

This problem of parameter redundancy, is intrinsic to
weighted sums of real exponentials.

The quality of the solution is difficult to measure. When
multiple solutions exist, the Cramér-Rao lower bound

underestimates the true variance of the parameter estimates.




Approach I: Non-linear parameter estimation

e Most direct approach: non-linear estimation of the model

parameters:

2

¢ (t1) — ¢(tl,k1,k2)>

measured TAC
modeled TAC
wash-in parameter vector
wash-out parameter vector
e Optimization algorithms commonly used: steepest descent,

Newton-Raphson method, conjugate descent,

Levenberg-Marquardt algorithm.




Non-linear parameter estimation: Shortcoming I

Example of parameter redundancy in e-sums.
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The result is an extreme tendancy to “fit the noise”.




Non-linear parameter estimation: Shortcoming I1I

Sensitivity to initial parameter vector example (suboptimal local
minima):

Consider again:

fl — 66—17.575_'_126—4.37575

Performing least squares fit with Levenberg-Marquardt algorithm:

1. Starting at: zo = [kip kio k30 k30] = [0 0 0 0] yields
£, = [8.1887 8.1887 5.5437 5.5437]. Cost = 6.17 x 10~*

. Starting at: xo = [1 2 3 4] yields
Ty = [11.9991 6.0008 4.3748 17.4970] Cost = 8.50 x 10~°.

Using multistart optimization to amerliorate this problem is costly.




Non-linear parameter estimation: Shortcoming I1I

Multiple local optima: Non-linear parameter estimates are sensitive to initial parameter vector values
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Approach II: Exponential spectral analysis

Instead of solving for the non-linear and linear parameters in:

N
pt) =i(t) > ki kye M
m=1

Preselect a set of ky (maybe 100) and solve for the linear
coefficients £7":

¢
m=1

where M is the number of preselected exponentials.

This linear system is easily solved using non-negative least squares
(NNLS) algorithms.




Approach II: Exponential spectral analysis
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Approach II: Exponential spectral analysis example
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Approach II: Exponential spectral analysis: Advantages

. No need to know a prior: how many exponential terms to use
in the model.

. No sensitivity with respect to starting estimate.

. Spectral coefficients may be interpreted as histograms.

. Comparison of several experiments is facilitated - the same

basis is used for each spectrum.




Approach II: Exponential spectral analysis: Shortcoming
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E is column rank deficient, even for small M

— parameter redundancy is even worse than in the non-linear

fitting case.
— gspectral parameter estimates are unacceptably sensitive to noise,

even for small values of M.




Approach II: Exponential spectral analysis: Shortcoming

[-125 rotenone =+ std. dev. Tc—99m sestamibi + std. dev.
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Proposed alternative approach to spectral analysis:

1. Accept the inherent limitations of first order

compartmental model fitting.

. Define the objective of parameteric modeling as the ability to
compare the results of several observations. e.g. compare
the retention of 2 tracers, or compare studies on several
patients.

. The parameter values should have physiological

significance.

To realize (1) through (3) we will have to compromise

goodness-of-fit in order to:
e Achieve lower parameter variance.

e Continue to employ a basis set with meaningful parameters.




Parsimonious exponential spectral analysis (PESA)

Key idea: Find a small set of exponentials that are able to

approximate a large set of exponential basis functions:

2
[~~ Tk Z:um Qtl] y tZE[O,T]

under the constraints p» >0, k5 >0, m=1,2, ..., M.
g vector containing the p>

ko vector containing the k5*

We are interested only in the k;. These constitute the
parameters of the parsimonious basis.




How do we choose the number of basis elements M?

[~~ ks Z:um —h tl] ) tlE[OvT]




Find basis of M exponentials to approximate

1\7Iexponentials with M>>M.
|

Convolve M basis functions with

input function.

|

Fit model to data time series.
|

Simulate model K times.

|

Calculate:
- norm of residual
- bias
- variance

!
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Parsimonious Exponential Spectral Analysis (PESA)
Evaluation using synthetic data

Fit models to:

fl — 6e —17.5¢ i 12 ¢ —4.3751¢

f2 116—11.667t_|_7e—3.5t.

Gaussian noise is added to give SNR of =~ 400.




Preliminary basis specification

Table 1: Parameters of exponential basis to be approximated using

parsimonious basis set

Parameter

T 1 S
L 125 time samples

100 unoptimized bases

0.001-1000
log spaced

100 noise realizations




Unoptimized set of basis functions
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E matrix: Columns = 100, Rank = 30




Choosing M: compromise between goodness-of-fit and

parameter bias metric

—-— f1
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== Chosen M
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Optimized set of basis functions
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PESA fits at M = 4
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PESA spectra at M =4
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Quality of the solution
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Application to real experimental data

Objective: Compare the kinetics of a new myocardial flow tracer

(12°T-iodorotenone ) with those of the well characterized tracer
(9MTc-sestamibi ).

Data: Consist of TACs obtained from 25 artificially perfused
isolated rabbit hearts. Activity is measured in the venous outflow

by a well counter.

Input function: A reference tracer that is not preferentially
retained in the myocardial compartment (13!I-albumin) provides

the blood input function for each experiment.




Isolated artificially perfused rabbit heart configuration

Isovolumic. retrograde, red blood cell-perfused isolated rabbit heart preparation

20 micron Blood filter Arterial pressure transducer

Bubble trap

Perfusate heating coil L
Isotope injection port

Left ventricle pressure transducer

Peristaltic pump Ball
alloon

Humidified 05/ COo

Blood/buffer perfusate Heating chamber

Ice bath [ J
o

Pacing stimulator .
Shaker Coronary venous sampling

catheter and collection tube

370C

Temperature monitor




Table 2: Parameters of exponential basis to be approximated using

parsimonious basis set for the isolated rabbit heart application

Parameter | Value Unit

T variable S

L variable time samples

100 unoptimized bases

1/60-190
log spaced




Approximation error metric vs. M
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Bias metric vs. M
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PESA Spectra at chosen M =11
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ESA spectra at M = 101:

[-125 rotenone = std. dev. Tc—99m sestamibi + std. dev.
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Conclusion

1. PESA appears to be very useful for analysis of comparative

tracer kinetic studies.

2. ESA as proposed by Cunningham and Jones (1993) should not
be expected to yield robust results.

Limitations:
e PESA requires an input function estimate.

e An estimate of the data SNR is required for the simulation

stage of the algorithm.
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