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Abstract

We presentan algorithm of reducedcomputationalcost
which is able to estimatekinetic model parameterdirectly
from dynamic ECT sinograms. The algorithm exploits the
extreme degree of parameterredundang inherentin linear
combinationsof the exponentialfunctionswhich representhe
modesof first order compartmentalystems. The singular
value decompositionis employed to find a small set of
orthogonafunctions,thelinearcombinationf which areable
to accuratelyrepresentall modeswithin the physiologically
anticipatedrangein a given study The reduced-dimension
basisis formedasthe corvolution of this orthogonalsetwith a
measurednput function. The Moore-Penros@seudoinerseis
usedto find coeficientsof this basis. Algorithm performance
is evaluatedat realistic countratesusingMCAT phantomand
clinical ?° Tc-teboroximemyocardial study data. Recoered
tissueresponsesomparefavorably with thoseobtainedusing
morecomputationallyintensive methods.

. INTRODUCTION

Most contemporarytechniquesfor the reconstructionof
emission computedtomography (ECT) images assumethat
the projection data are obtainedfrom a radionuclidesource
distribution which doesnot vary in time. In mostfunctional
studies which involve the use of a rotating camerawhich
cannotacquire projectionsover 360° simultaneously this is
a poor assumption. There exists, consequentlya need for
algorithmscapableof solvingthe dynamicECT reconstruction
problem, which involves the estimation not only of the
underlying functional anatomicsourcegeometry but also of
thepharmacokineticsf injectedradiotracematerials.

Reutteret al. have demonstratechn algorithm capableof
fitting single compartmentmodelsdirectly to the projections
of both phantomand clinical myocardialstudies[1, 2]. A
stabilizedNewton-Raphsoroptimizationalgorithmis usedto
solve the non-linear weighted least squaresproblem whose
solution yields the kinetic parametersdirectly from the
acquiredprojection data. While this methodis effective in
providing the desiredestimates,the amountof computation
requiredis large for studiesinvolving mary dynamicregions.
The objective of the approachpresentedhere is to reduce
these requirementsthrough dimensionality reduction and
linearizationof the problem.
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SouthAfrican NationalResearchoundation.

Linear algorithms for the estimation of the kinetic
parametersin dynamic ECT, which employ a preselected
time-activity basis of exponential functions, have been
presentedn the past[3, 4]. Preselectiorof the kinetic basis
corvertsa problemwhich is non-linearin the exponentialrate
parametersnto a much simpler linear problem. Basis sets
usedby thesealgorithmsare typically composedof families
of decayingreal exponentialfunctions having rate constants
selectedso as to spanthe range of physiologically feasible
modesexpectedin the data. For example, Cunninghamet al.
utilized asetof M = 100 sampledexponentialfunctions:

fall=e kntA 1=0,1,2,...,L—1, (1)
wherel is a discretetime index and k7 € [107%, 1] s L.
The k;; were spacedogarithmically on this interval, whose
boundswereselectedor theapplicationof exponentialspectral
analysis to cerebral positron emission tomography (PET)
studiesusingthreedifferenttraceragents.

As we have shawvn previously, an orthogonalbasissetof 6
functions (sampledregularly at 32 pointsin ¢t € [0, 300s] ),
is ableto approximateary one of thesef; with a maximum
deviation of well under 1% [5]. The large dimensionality
reduction possible illustrates the well-known high level of
redundanyg thatexistsamongfamiliesof closelyparameterized
real decaying exponentials[6, 7]. Here, we exploit this
redundang to achieve significantcomputationalavings over
previousalgorithmsfor exponentialspectraknalysis.

[I. PROBLEM FORMULATION

We beggin by assuming that the underlying source
distribution Q(x) hasbeensegmentedinto several regions of
interest(ROI's)Q,(x), n =1,2,...,N.

For the applicationof the algorithmto myocardialstudies
during which both wash-inand wash-outof the traceroccur,
such as those involving % Tc-teboroxime, we assumethat
tracerkinetics are governedby a single compartmentmodel.
To copewith possibleregion heterogeneity8], we incorporate
additionalflexibility in allowing the time-actvity curve (TAC)
of eachROI to be composedof linear combinationsof the
responsesf severalsuchmodels:

M
In(t) = D kfimi(t) x e 7Hi2t, )
m=1

wherei(t) is the measuredlood input function, and the ‘ «’
operatordenotesonvolution.



As in [5], we form the (L x M) matrix X whosernth
columnis f[!] asdefinedin (1), andinvoke the singularvalue
decompositionSVD) to find orthogonalbasisvectorsfor the
rangeof X. Thesearetheleft singular(column)vectorsu,;, of
theSVD of X:

uM)

whereV is the matrix of right singularvectors,andS is the
diagonalmatrix of singularvalues. We associatehe discrete
time index [ with eachrow of U. Dependingon the degreeof
accurag requiredn thesampledepresentatioof the I, (¢), we
utilize only thefirst M < M of U suchthat:

llM).
Typically, M = 4 is sufiicient for the myocardialimaging
applicationsve have studied.

X=VvsUT, U= (u1 Uy - @)

U:(uluz--- (4)

We then form the matrix C from the columns of U
convolvedwith thesampledloodinputfunctions[l], whichwe
assuméhaseitherbeenmeasurear estimated:

).

wheree,, = u,, %4[l], 1=0,1,...,L—1.

C' = (01 cy - (5)

With the kinetic model formalized, we wish to estimate
the coeficients y,,,,, of the ¢, for all regions,which form the
approximatedAC’s as:

M
L= fimnem[l], 1=0,1,...,L—=1; (6)
m=1

whereL = RP, thetotal numberof angularprojections given
R cameraotationswith P angulamprojectiongperrotation,and
@ binsperprojection.

[1l. PROBLEM SOLUTION

We begin by lexicographicallystackingthe projectionsof
the RP x () measureginogramy into thevectory. Similarly
the P x @ sinogramY/, for eachof the N segmentedregions
fn(x) are stacled into the vectorsy!,. We then define the
RPQ@ x M matricesG,, which consistof R x M replicates
of y,,. The geometric weighting matrix for the activity
contributionsof eachregionis thengivenby:

G=[G G, Gy . @

The secondmatrix we will describeconsistsof blocks
containingthe corvolved basisfunctionsc,,. For eachtime
samplel, we form the PQ) x M matrices

e
C = 1. 2: M (8)
u1 [l] u2 [l] UM [l]

fromwhichthe RPQ x N M basisweightingmatrix

Co Co Co
C, C: Ci
C= . : . )
Cr_1 Cr_: Cr
is composed.

The vector i containingthe coeficient estimatesu,,,,, is
easilyobtainedvia solutionof thelinearsystem:

§=Fa=(G-O)a (10)

where the operator
multiplication.

denotes element-by-element

Equation 10 may then be solved by the method of least

squaredor thekinetic parameters
f=(FTF)'F'y, (11)

when (FTF) is invertible. When this is not the case, the
SVD may be usedto find the pseudoinerse. This is unlikely,
since (10) is typically highly overdeterminedowing to the
fact that the numberof projection measurementacquiredin
a typical ECT study far exceedthe numberof parametergo
be estimated.We henceforthrefer to the algorithm developed
abore as the ‘convolved-orthogmal basis reconstruction
algorithm’ (COBRA).

V. ALGORITHM EVALUATION

Thealgorithmis first appliedto a singleslice of a dynamic
realisticmathematicatardiactorso(MCAT) phantom[9], and
thento a ?? Tc-teboroximemyocardialpatientstudy

A. Phantom study

The3D MCAT phantomis shavnin Figurel. Thisphantom
modelsnotonly themyocardiumbput alsothemyocardiablood
pool, the backgroundactiity in the body, andthe liver. The
projectionsof a single slice trans\erseto the long axis of the
bodywerechoserfor this evaluation.

The simulateddatasetwvas acquiredover 15 rotationsof a
single-headedcamera, taking 120 regularly spacedangular
measurementper rotation, of 64 projectionbins each. The
total imaging period was 15 minutes. While attenuationwas
modelednon-idealsystenresponse@ndscattemwerenot.

A total of 6 regions,having the TAC's illustratedin Figure
4, wereincludedin the phantomdata.

The orthogonalbasisfunctionswere calculatecthroughthe
applicationof the SVD to a matrix of 100 sampledexponential
functions parameterizedby rate constantslogarithmically
spacedin the interval [5 x 107*, 2]. This interval includes
the true rangeof k15 € [0.002, .6] from which the TAC's are
derived. In practice, of course,the true rangeis unknown,
so the choice of interval for k;2 should ensure that all
physiologically feasible modes are accommodated. The
number)M of left singularvectorsu,, retainedafterapplication



Figure 1: 3D MCAT emissionphantom, of which a single slice
throughthe myocardiumtrans\erseto the long axis of the body is

taken as 2D phantomfor thesestudies. The liver (region 6) is shavn

to theleft of the heartin this illustration. We seethatthe myocardium
containstwo defects(darker regions 4 and 5) and normal region 3,

which is renderednon-contiguousby the defects. Region 2 is the
myocardial blood pool, while region 1, representshe background
actwity in thetorso.

of the SVD is selectedas the minimum number neededto
approximateall of the exponentialfunctions f,,,[I] to within
1% peak deviation, using the reduced-dimensiofasis. An
additionalbasisfunction ury1[l] = d[I] is includedto allow
for explicit modeling of the blood pool within the imaged
distribution, whered[{] is the discrete-timémpulse. The basis
functionsemployedappeain Figure?2

Orthogonal basis functions used in phantom study (M=4)
T T T

— ]
ujfl
~ou
_ oy

0.25@

|
0.2r,
|

|
0.15r

0.1F

Amplitude

0.05r

Time (s)

Figure 2: Orthogonalbasisfunctions emplo/ed in phantomstudy
Thesearethefirst 4 left singularvectorsu,, of U.

The algorithm was testedover I = 100 andI = 1000
sinogramrealizations. The mean of all estimatesji; was
comparedo thetrue u (asrecoveredfrom noise-fregorojection
data)to evaluatebiasin the estimatesOwing to the parameter
redundang inherentin functionsinvolving exponentialsums,
we do not attemptto recover this form of parameterizatiofior
the recoreredTAC's. Rather we usethe following metric to
expressthe deviation betweenthe recovered f,, ] andthe true
TAC's:

a1 & BT (- )’
dor N oy maXje{o,1,.--, L—1} (fn[l])

x100. (12)

For those parameterswhich are found to be unbiased,

the variance of each estimateis subsequentlycomparedto

its Cranmeér-Rao lower bound. When the contritution of a

specific basis function towards a TAC is negligible, even

negligible estimationerrors producelarge parameterbiases.
Consequentlyit is appropriateo performanalysisof parameter
bias and varianceonly on those coeficients which are large

enoughso asto introducesignificantpower into the recovered

TAC. To this end,we introducethe metric:

= ”Hm"cm”2 x 100,

| o e

wherec,, is themth corvolvedbasisfunctionand|| - || denotes
theEuclideamorm.

mn
pow

(13)

B. Patient study

To establishwhether the COBRA algorithm is able to
produceusefulestimate®f regional TAC's in aclinical setting,
we apply the algorithm to a single trans\erse slice from a
99Tc-teboroxime myocardial patient study  While the true
regional kinetics for this datasetare unknown, we are ableto
compareour resultswith those obtainedpreviously through
applicationto the samedata of the methodsof Formiconi
[10] and the direct single compartmenfit to projection data
(DSCFP)algorithmof Reutteretal. [2].

The methodof dataacquisitionis describedn [2]. Briefly,
athreedetectolISPECTstudywasconductedhaving aduration
of 15 minutes,during which a full (360°) setof 120 angular
projectionswasacquiredevery 10 s. An attenuatiormapwas
constructedisingatransmissiorsourceto allow for attenuation
compensation.

The imageddistribution was delineatedinto the regions:
left ventricularmyocardium blood pool, liver andbackground
tissue using the automatedvolume of interest specification
algorithmdescribedn [2]. The 2D sliceillustratedin Figure3
wasselectedor the purposeof algorithmevaluation.

Figure 3: Specific 2D slice throughimagedtorso, the projections
of which are selectedfor algorithmevaluation. The contoursshavn
delineatetissueregions.

One of the primary motivations for the developmentof
algorithms able to reconstructimaged distributions directly
from projectionsis the ability of such algorithmsto base
estimate®n projectiondatawhich aretemporallyinconsistent.
In order to artificially introduce projection inconsisteny,



we significantly decreasehe time resolutionof the study by
summingeachsetof 4 sequentiallyacquiredsinograms.This
yields a setof 22 sinogramssampledat 40 s intenals. Since
the activity of regionswithin the distribution changedy more
than 100% during intervals of this length, a large degree of
inconsisteng is presenin thisreduceddataset.

V. EXPERIMENTAL RESULTS

A. Phantom study

Figure4 comparesheoriginal regional TAC’sandthemean
TAC's recoveredby the COBRA algorithmat a total sinogram
countvalueof 2.5 x 10°.

Note that we have only processeddata from the first 5
camerarotations,asinclusion of the dataobtainedduring the
final 10 revolutions did not materially affect the estimates
obtained.This behaiour stemsrom thehighly overdetermined
natureof thelinearsystemsolvedby the algorithm.

TACL |

TACZ |

TAC3 |

TAC4 |

TACS |

TAC6 |

% power in SUbTAC 1 42.3 42.2 95.2 86.0 73.4 104.1
% biasin coeficient 1 —0.24 —0.35 —0.61 —1.74 —1.40 —0.57
Var. as% of CRLB. 115.56 118.05 113.46 120.49 107.59 117.03
% power in SUbTAC 2 55.6 55.7 2.7 10.7 21.5 0.0
% biasin coeficient2 —0.66 —0.52 —2.66 —0.54 —0.77 —2.64
Var. as% of CRLB. 115.30 112.37 123.88 118.42

% powerin SubTAC 3 77.9 77.4 0.7 2.5 3.0 0.4
% biasin coeficient3 —0.48 —0.77 0.13 0.67 10.73 —0.98
Var. as% of CRLB. 114.05 120.49 111.52 132.11 120.37
% power in SUbTAC 4 2.6 2.5 0.0 0.0 0.1 0.0
% biasin coeficient4 —0.21 —1.24 12.54 124.32 —40.58 —5.26
Var. as% of CRLB. 114.51 130.09

Table2

Quantitiesusedin analysisof parametebiasandvariance These
statisticswereobtainedover 1000noiserealizationsusinga setof 4
basisfunctionsu,, whichwereall mutually orthogonabefore
convolution with the bloodinput function. The 1000measured
sinogramsontained.5 x 10° countseachover 15 revolutions. Only
thefirst 5 revolutionswereusedto producetheseresults.The

CranerRaolower boundis abbreiatedas'CRLB’.

We seealso from Table 2 that variancesfor the estimates
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Figure4: At 2.5 x 10° countsthe meanTAC's recoveredover 1000
noiserealizationg-) fit thetrue (phantom)dataclosely
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Tablel containstheresultsof threetests,eachof 100 noise
realizationsat respectie counttotalspersliceof 5 x 10%,2.5 x
10% and1 x 105.

[ Test J] Counts | Flops | RMS error (Mg, %)
[ [ TACT | TAC2 | TAC3 | TAC4 | TAC5 | TAC6
1 5.0e+05 1.1e+08 0.18 0.58 0.75 6.98 4.35 0.27
2 2.5e+05 1.1e+08 0.17 0.87 1.11 8.88 5.58 0.51
3 1.0e+05 1.1e+08 0.19 1.09 1.54 14.69 8.44 0.46
Tablel
Resultsof 100noiserealizationtestsof the parameteestimation
algorithm.

Most of the errorswerewell belov 5%, even at the lowest
total countsvalueof 10° tested TAC 4, which containgheleast
power of all the TAC's is alsothe mostpoorly recovered,with
aworstcaseerrorof My, = 14.7%.

We seefrom Table2, thatabsolutebiasis belowv 1% for all
parameter$or which M,,, is abose 4%. Parameted of TAC 4
(144) is themostpoorly estimatedf all parametersyith abias
of 124%. Thecornvolvedbasisfunctionscaledoy this parameter
containdessthan0.1% of thetotal pawerwithin TAC 4, sothis
biasis nota significantsourceof error.

TAC's.
the estimation of myocardial and liver actvities alone,
while Formiconi's method was employed to determinethe

for thosecoeficientswhich significantlyweightthe TAC's are
reasonablycloseto the Cranér-Raolower bound,and do not
exceedit by morethan30%. Analysisof parametewvariance
is performedonly for thoseparametergxhibiting lessthan2%

absolutebias. The COBRA algorithmexecutesn underl5son

aPentiumll 450MHz processofor thetestspresentedhere.

B. Patient study

Figure5 comparesTAC's derived by applying Formiconi’'s
method to those obtained using the COBRA algorithm
presentedhere. CorrespondingTAC’s appearsimilar, and
the decreasedtime resolution and greater smoothnessof
the COBRA TAC's is evident. Quantitatvely, we have
My, = 9.4%.
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Figure5: Comparisonof TAC's recoseredvia Formiconi's method
andusingthereduced-dimensiohasisestimator(dashedines).

In Figure 6, TAC’s derived through application of the
DSCFPdue to Reutteret al. are comparedio the COBRA
Since the latter method was applied towards



backgroundand blood pool TAC's, only the two former
responsesre shovn. Again, the two setsof curvescompare
favorably, with M, = 7.3%.

Comparison of TAC's recovered by DSCFP method and COBRA method (--)
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Figure6: Comparisorof TAC's recoreredvia the directfit of asingle
compartmentnodelto projectiondata(methodof Reutteretal.) and
the COBRA method.Blood andbackgroundlrAC'’s arenot shawn, as
Formiconi's methodwasusedto estimatethesein [2]

V1. DIsSCUSSION

The experimental results indicate that the COBRA
algorithm proposedis able to rapidly recorer TAC’s from
temporallyinconsistendynamicSPECTdatasetsIn phantom
studies, the recovered parameterstypically exhibit a small
bias of the order of 3%, and estimatorefficiengy is within
30% of the Craner-Rao lower bound on parametewariance.
Whenappliedto a clinical myocardialSPECTstudyrendered
temporally inconsistent through artificial reduction of
time-resolution, the recovered curves compared favorably
with those obtainedthrough application of the methodsof
FormiconiandReutteretal. to hightemporalresolutiondata.

While mary previous algorithms have required
accessto powerful computing equipment when applied
to large multislice, multiregion studies, we have
demonstratedan algorithm which scales approximately as
O(RPQ(MN)? + (MN)?) with M ~ 4 ratherthanM ~ 100
asin the spectralmethodof Cunninghamet al. The method
of Reutter et al. is more comple, scaling approximately
as O(RPQN* + N5 4+ N?3) per iteration. However, for
typical large clinical datasetswith few regions (RPQ large),
computationis dominatedby the O(RPQN*) term and the
DSCFPand COBRA algorithmsincur similar computational
costfor M =~ N. The computationtime requiredfor the
applicationof COBRA to the clinical study using a personal
computemwas35 s versuss8 s for the DSCFPalgorithm.
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