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Abstract
We presentan algorithm of reducedcomputationalcost

which is able to estimatekinetic model parametersdirectly
from dynamic ECT sinograms. The algorithm exploits the
extreme degree of parameterredundancy inherent in linear
combinationsof the exponentialfunctionswhich representthe
modesof first order compartmentalsystems. The singular
value decompositionis employed to find a small set of
orthogonalfunctions,thelinearcombinationsof whichareable
to accuratelyrepresentall modeswithin the physiologically
anticipatedrange in a given study. The reduced-dimension
basisis formedastheconvolutionof this orthogonalsetwith a
measuredinput function. TheMoore-Penrosepseudoinverseis
usedto find coefficientsof this basis. Algorithm performance
is evaluatedat realisticcountratesusingMCAT phantomand
clinical ��� Tc-teboroximemyocardial study data. Recovered
tissueresponsescomparefavorably with thoseobtainedusing
morecomputationallyintensivemethods.

I . INTRODUCTION

Most contemporarytechniquesfor the reconstructionof
emissioncomputedtomography(ECT) imagesassumethat
the projection data are obtainedfrom a radionuclidesource
distribution which doesnot vary in time. In most functional
studies which involve the use of a rotating camerawhich
cannotacquireprojectionsover �
	���
 simultaneously, this is
a poor assumption. There exists, consequently, a need for
algorithmscapableof solvingthedynamicECT reconstruction
problem, which involves the estimation not only of the
underlying functional anatomicsourcegeometry, but also of
thepharmacokineticsof injectedradiotracermaterials.

Reutteret al. have demonstratedan algorithm capableof
fitting single compartmentmodelsdirectly to the projections
of both phantomand clinical myocardial studies[1, 2]. A
stabilizedNewton-Raphsonoptimizationalgorithm is usedto
solve the non-linear weighted least squaresproblem whose
solution yields the kinetic parametersdirectly from the
acquiredprojection data. While this methodis effective in
providing the desiredestimates,the amountof computation
requiredis large for studiesinvolving many dynamicregions.
The objective of the approachpresentedhere is to reduce
these requirements through dimensionality reduction and
linearizationof theproblem.

1Thiswork wassupportedby USDepartmentof HealthandHuman
ServicesgrantsHL-07367,R01-HL50663andP01-HL25840,by US
Departmentof Energy contract DE-AC03-76SF00098and by the
SouthAfrican NationalResearchFoundation.

Linear algorithms for the estimation of the kinetic
parametersin dynamic ECT, which employ a preselected
time-activity basis of exponential functions, have been
presentedin the past[3, 4]. Preselectionof the kinetic basis
convertsa problemwhich is non-linearin the exponentialrate
parametersinto a much simpler linear problem. Basis sets
usedby thesealgorithmsare typically composedof families
of decayingreal exponentialfunctions having rate constants
selectedso as to span the rangeof physiologically feasible
modesexpectedin the data. For example,Cunninghamet al.
utilized asetof ��������� sampledexponentialfunctions:������ ��� �����! #"$&%('�)�* � ��� * � *(+,*.-/-�-0*�132 � * (1)

where � is a discretetime index and 4 ��65 � ��� �87 * � � s�!9 .
The 4 �� were spacedlogarithmically on this interval, whose
boundswereselectedfor theapplicationof exponentialspectral
analysis to cerebral positron emission tomography (PET)
studiesusingthreedifferenttraceragents.

As we have shown previously, an orthogonalbasissetof 6
functions(sampledregularly at � + points in : 5 � � * �
���<; � ),
is able to approximateany oneof these

� �� with a maximum
deviation of well under 1% [5]. The large dimensionality
reduction possible illustrates the well-known high level of
redundancy thatexistsamongfamiliesof closelyparameterized
real decaying exponentials [6, 7]. Here, we exploit this
redundancy to achieve significantcomputationalsavings over
previousalgorithmsfor exponentialspectralanalysis.

I I . PROBLEM FORMULATION

We begin by assuming that the underlying source
distribution =?>A@CB hasbeensegmentedinto several regionsof
interest(ROI’s) =ED!>F@CB *CG �H� *I+,*�-/-�-�*�J .

For the applicationof the algorithm to myocardialstudies
during which both wash-inand wash-outof the traceroccur,
such as those involving ��� Tc-teboroxime, we assumethat
tracerkinetics are governedby a single compartmentmodel.
To copewith possibleregion heterogeneity[8], we incorporate
additionalflexibility in allowing the time-activity curve (TAC)
of eachROI to be composedof linear combinationsof the
responsesof severalsuchmodels:

K D >A:LB<� �MN ��EO 9 4
�� DP 9RQ >F:LB0ST� �. "$ UAV ) * (2)

where Q >F:LB is the measuredblood input function, and the ‘ S ’
operatordenotesconvolution.



As in [5], we form the > 1XWZY�RB matrix [ whose Y\ th
columnis

� �� � �F� asdefinedin (1), andinvokethesingularvalue
decomposition(SVD) to find orthogonalbasisvectorsfor the
rangeof [ . Thesearetheleft singular(column)vectors] �� of
theSVD of [ :[X�_^a` Ybdc * Yb �Xef] 9 ] Phg/g�g ] �Mdi (3)

where ^ is the matrix of right singularvectors,and ` is the
diagonalmatrix of singularvalues. We associatethe discrete
time index � with eachrow of

b
. Dependingon the degreeof

accuracy requiredin thesampledrepresentationof the
K D!>A:LB , we

utilize only thefirst �kj Y� of Yb suchthat:b �le�] 9 ] P g/g�g ] M i - (4)

Typically, � mon is sufficient for the myocardial imaging
applicationswe havestudied.

We then form the matrix p from the columns of
b

convolvedwith thesampledbloodinput function Q � ��� , whichwe
assumehaseitherbeenmeasuredor estimated:p�q8�le�r 9 r P g/g�g r M i - (5)

where r � �s] � S Q �L�f� * � �s� * � *!-�-/-!*I132 � .
With the kinetic model formalized, we wish to estimate

the coefficients t � D of the r � for all regions,which form the
approximatedTAC’sas:uK D ���v� � MN�EO 9 ut � D r � ���v� * � �s� * � */-/-�-w*�132 �yx (6)

where 1 �Hz?{ , thetotal numberof angularprojections,givenz camerarotationswith { angularprojectionsperrotation,and|
binsperprojection.

I I I . PROBLEM SOLUTION

We begin by lexicographicallystackingthe projectionsof
the z?{ W | measuredsinogram }~ into thevector }� . Similarly
the { W | sinogram

~ qD for eachof the J segmentedregions� D >F@CB are stacked into the vectors � qD . We then define thez?{ | W � matrices � D which consistof z W � replicates
of � q� . The geometric weighting matrix for the activity
contributionsof eachregion is thengivenby:����� � 9 � P g/g/g �d��� - (7)

The secondmatrix we will describeconsistsof blocks
containingthe convolved basisfunctions r � . For eachtime
sample� , we form the { | W � matrices

p % �
���
�
�8��� �������f� �����I�(������� ����8��� �������f� �����I�(������� ���

...
...

...
...� � � ����� � � �����I�(��� � � ���

����
� (8)

from which the z?{ | W�J � basisweightingmatrix

p��
���
�
�¡  �¢  �(�(� �¢ � � � � �(�(� � �
...

...
...

...�¤£,¥ � �¡£,¥ �6�(�(� �¤£,¥ �
����
� (9)

is composed.

The vector ¦§ containingthe coefficient estimatest � D is
easilyobtainedvia solutionof thelinearsystem:

}� �©¨R¦§ �R>ª� g p«B¬¦§ (10)

where the operator ‘ g ’ denotes element-by-element
multiplication.

Equation10 may then be solved by the methodof least
squaresfor thekinetic parameters¦§ ��>­¨ c ¨¬Bw�!9�¨ c }� * (11)

when >A¨ c ¨¬B is invertible. When this is not the case, the
SVD may be usedto find the pseudoinverse.This is unlikely,
since (10) is typically highly overdetermined,owing to the
fact that the numberof projectionmeasurementsacquiredin
a typical ECT study far exceedthe numberof parametersto
be estimated.We henceforthrefer to the algorithmdeveloped
above as the ‘convolved-orthogonal basis reconstruction
algorithm’ (COBRA).

IV. ALGORITHM EVALUATION

Thealgorithmis first appliedto a singlesliceof a dynamic
realisticmathematicalcardiactorso(MCAT) phantom[9], and
thento a �I� Tc-teboroximemyocardialpatientstudy.

A. Phantom study
The3D MCAT phantomis shown in Figure1. Thisphantom

modelsnotonly themyocardium,but alsothemyocardialblood
pool, the backgroundactivity in the body, and the liver. The
projectionsof a singleslice transverseto the long axis of the
bodywerechosenfor thisevaluation.

The simulateddatasetwasacquiredover 15 rotationsof a
single-headedcamera, taking 120 regularly spacedangular
measurementsper rotation, of 64 projectionbins each. The
total imaging period was 15 minutes. While attenuationwas
modeled,non-idealsystemresponseandscatterwerenot.

A total of 6 regions,having the TAC’s illustratedin Figure
4, wereincludedin thephantomdata.

Theorthogonalbasisfunctionswerecalculatedthroughthe
applicationof theSVD to a matrix of ���
� sampledexponential
functions parameterizedby rate constants logarithmically
spacedin the interval � ® W ��� �87 *#+ � . This interval includes
the true rangeof 4 9 P 5 � � - ��� +,*.- 	 � from which the TAC’s are
derived. In practice,of course,the true rangeis unknown,
so the choice of interval for 4 9 P should ensure that all
physiologically feasible modes are accommodated. The
number� of left singularvectors] � retainedafterapplication



Figure 1: 3D MCAT emissionphantom, of which a single slice
through the myocardiumtransverseto the long axis of the body is
taken as2D phantomfor thesestudies.The liver (region 6) is shown
to theleft of theheartin this illustration. We seethatthemyocardium
containstwo defects(darker regions 4 and 5) and normal region 3,
which is renderednon-contiguousby the defects. Region 2 is the
myocardialblood pool, while region 1, representsthe background
activity in thetorso.

of the SVD is selectedas the minimum numberneededto
approximateall of the exponentialfunctions

� �¯� ��� to within�±° peak deviation, using the reduced-dimensionbasis. An
additionalbasisfunction ² M«³ 9 � ��� ��´ � �F� is includedto allow
for explicit modeling of the blood pool within the imaged
distribution, where ´ � �F� is the discrete-timeimpulse. Thebasis
functionsemployedappearin Figure2
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Figure 2: Orthogonalbasisfunctions employed in phantomstudy.
Thesearethefirst 4 left singularvectorsµ.¶ of · .

The algorithm was testedover
K �¸����� and

K �¸�f�
�
�
sinogram realizations. The mean of all estimates ¦§º¹ was
comparedto thetrue § (asrecoveredfrom noise-freeprojection
data)to evaluatebiasin theestimates.Owing to theparameter
redundancy inherentin functionsinvolving exponentialsums,
we do not attemptto recover this form of parameterizationfor
the recoveredTAC’s. Rather, we usethe following metric to
expressthe deviation betweenthe recovered

u� D � ��� andthe true
TAC’s:

� dev » �J �ND O 9
¼ 9½¿¾ ½% O 9 e � D � �F� 2 u� D � �F� i PÀ¿Á±Â %�ÃÅÄLÆ�Ç 9 ÇÉÈÉÈÉÈ Ç ½ �09�Ê¬Ë � D � �F��Ì W ����� - (12)

For those parameterswhich are found to be unbiased,

the varianceof each estimateis subsequentlycomparedto
its Craḿer-Rao lower bound. When the contribution of a
specific basis function towards a TAC is negligible, even
negligible estimationerrors producelarge parameterbiases.
Consequently, it is appropriateto performanalysisof parameter
bias and varianceonly on thosecoefficients which are large
enoughsoasto introducesignificantpower into the recovered
TAC. To this end,we introducethemetric:

� � Dpow � ÍÍ t � D r � ÍÍ
P

ÍÍ ¾ M�ºO 9 t � D r � ÍÍ
P W ����� * (13)

wherer � is the \ th convolvedbasisfunctionand ÍÍ g ÍÍ denotes
theEuclideannorm.

B. Patient study
To establishwhether the COBRA algorithm is able to

produceusefulestimatesof regionalTAC’s in aclinical setting,
we apply the algorithm to a single transverseslice from a��� Tc-teboroximemyocardial patient study. While the true
regional kinetics for this datasetareunknown, we areable to
compareour resultswith thoseobtainedpreviously through
application to the samedata of the methodsof Formiconi
[10] and the direct single compartmentfit to projectiondata
(DSCFP)algorithmof Reutteretal. [2].

Themethodof dataacquisitionis describedin [2]. Briefly,
a threedetectorSPECTstudywasconducted,having aduration
of 15 minutes,during which a full ( ��	
�Å
 ) set of 120 angular
projectionswasacquiredevery 10 s. An attenuationmapwas
constructedusingatransmissionsource,toallow for attenuation
compensation.

The imageddistribution was delineatedinto the regions:
left ventricularmyocardium,bloodpool, liver andbackground
tissue using the automatedvolume of interest specification
algorithmdescribedin [2]. The2D slice illustratedin Figure3
wasselectedfor thepurposeof algorithmevaluation.

Figure 3: Specific 2D slice through imagedtorso, the projections
of which areselectedfor algorithmevaluation. The contoursshown
delineatetissueregions.

One of the primary motivations for the developmentof
algorithms able to reconstructimaged distributions directly
from projections is the ability of such algorithms to base
estimateson projectiondatawhich aretemporallyinconsistent.
In order to artificially introduce projection inconsistency,



we significantly decreasethe time resolutionof the study by
summingeachsetof 4 sequentiallyacquiredsinograms.This
yields a setof 22 sinogramssampledat 40 s intervals. Since
theactivity of regionswithin thedistribution changesby more
than 100° during intervals of this length, a large degreeof
inconsistency is presentin this reduceddataset.

V. EXPERIMENTAL RESULTS

A. Phantom study
Figure4 comparestheoriginal regionalTAC’sandthemean

TAC’s recoveredby theCOBRA algorithmat a total sinogram
countvalueof +�- ® W ���
Î .

Note that we have only processeddata from the first 5
camerarotations,as inclusionof the dataobtainedduring the
final 10 revolutions did not materially affect the estimates
obtained.Thisbehaviour stemsfrom thehighly overdetermined
natureof thelinearsystemsolvedby thealgorithm.
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Figure4: At ÏÑÐ Ò&ÓdÔwÕvÖ counts,themeanTAC’s recoveredover 1000
noiserealizations(–) fit thetrue(phantom)dataclosely.

Table1 containstheresultsof threetests,eachof 100noise
realizationsat respectivecounttotalspersliceof ® W ����Î *I+�- ® W�f�
Î and � W �f�
Î .

Test Counts Flops RMSerror( × dev Ø )
TAC 1 TAC 2 TAC 3 TAC 4 TAC 5 TAC 6

1 5.0e+05 1.1e+08 ÙLÚ UFÛ ÙLÚ Ü Û ÙÝÚ Þ­Ü ßLÚ à Û á Ú âãÜ ÙLÚ V Þ
2 2.5e+05 1.1e+08 ÙLÚ U Þ ÙLÚ Û Þ U Ú UãU Û Ú Û­Û ÜÝÚ Ü Û ÙLÚ Ü U
3 1.0e+05 1.1e+08 ÙLÚ U à U Ú Ù­à U Ú Ü á UFá Ú ßãà Û Ú áãá ÙLÚ á ß

Table1
Resultsof 100noiserealizationtestsof theparameterestimation

algorithm.

Most of the errorswerewell below ® ° , evenat the lowest
totalcountsvalueof ����Î tested.TAC 4,whichcontainstheleast
power of all theTAC’s is alsothemostpoorly recovered,with
a worstcaseerrorof � dev ���/n -Éä ° .

We seefrom Table2, thatabsolutebiasis below �v° for all
parametersfor which � pow is above n,° . Parameter4 of TAC 4
( t 7I7 ) is themostpoorlyestimatedof all parameters,with abias
of � + n,° . Theconvolvedbasisfunctionscaledby thisparameter
containslessthan � - �v° of thetotalpowerwithin TAC 4, sothis
biasis nota significantsourceof error.

TAC 1 TAC 2 TAC 3 TAC 4 TAC 5 TAC 6

% power in subTAC 1

áªV Ú â áªV Ú V àãÜÝÚ V Û ßÝÚ Ù Þ­âLÚ á U Ù á Ú U
% biasin coefficient 1 å
ÙLÚ V­á å
ÙLÚ âãÜ å
ÙLÚ ß U å U Ú Þ á å U Ú á Ù å
ÙLÚ ÜãÞ
Var. as% of CRLB.

U­U ÜLÚ Üãß U­UAÛ Ú ÙãÜ U­U âLÚ á ß UFV ÙLÚ á à U ÙãÞÝÚ Ü­à UãU ÞÝÚ Ù­â
% power in subTAC 2 ÜãÜÝÚ ß ÜãÜÝÚ Þ V Ú Þ U ÙÝÚ Þ VæU Ú Ü ÙLÚ Ù
% biasin coefficient 2 å
ÙLÚ ßãß å
ÙLÚ Ü V å V Ú ßãß å
ÙLÚ Ü á å
ÙLÚ Þ­Þ å V Ú ß á
Var. as% of CRLB.

U­U ÜLÚ âãÙ U­UAV Ú âªÞ UFV âLÚ ÛãÛ UãUFÛ Ú áãV
% power in subTAC 3 ÞãÞæÚ à ÞãÞæÚ á ÙÝÚ Þ V Ú Ü âLÚ Ù ÙLÚ á
% biasin coefficient 3 å
ÙLÚ áªÛ å
ÙLÚ ÞãÞ ÙLÚ U â ÙLÚ ßªÞ U ÙLÚ ÞAâ å
ÙLÚ à Û
Var. as% of CRLB.

U­UFá Ú ÙãÜ UFV ÙLÚ á à U­UãU Ú Ü V U â V Ú UãU UAV ÙLÚ âãÞ
% power in subTAC 4

V Ú ß V Ú Ü ÙÝÚ Ù ÙÝÚ Ù ÙLÚ U ÙLÚ Ù
% biasin coefficient 4 å
ÙLÚ VæU å U Ú V­á UAV Ú Ü á UFV­á Ú â V å á ÙLÚ Ü Û å
ÜLÚ V ß
Var. as% of CRLB.

U­UFá Ú Ü U U âãÙLÚ Ùãà
Table2

Quantitiesusedin analysisof parameterbiasandvariance.These
statisticswereobtainedover 1000noiserealizations,usingasetof ç

basisfunctions µ ¶ whichwereall mutuallyorthogonalbefore
convolution with thebloodinput function.The1000measured

sinogramscontainedÏÑÐ ÒèÓ�Ô(Õ Ö countseachover 15 revolutions.Only
thefirst 5 revolutionswereusedto producetheseresults.The

Craḿer-Raolower boundis abbreviatedas‘CRLB’.

We seealso from Table 2 that variancesfor the estimates
for thosecoefficientswhich significantlyweight theTAC’s are
reasonablycloseto the Craḿer-Rao lower bound,anddo not
exceedit by more than ���Å° . Analysisof parametervariance
is performedonly for thoseparametersexhibiting lessthan + °
absolutebias.TheCOBRAalgorithmexecutesin under15son
a PentiumII 450MHz processorfor thetestspresentedhere.

B. Patient study
Figure5 comparesTAC’s derivedby applyingFormiconi’s

method to those obtained using the COBRA algorithm
presentedhere. CorrespondingTAC’s appearsimilar, and
the decreasedtime resolution and greater smoothnessof
the COBRA TAC’s is evident. Quantitatively, we have� dev �sé - nê° .
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Figure 5: Comparisonof TAC’s recoveredvia Formiconi’s method
andusingthereduced-dimensionbasisestimator(dashedlines).

In Figure 6, TAC’s derived through application of the
DSCFP due to Reutter et al. are comparedto the COBRA
TAC’s. Since the latter method was applied towards
the estimation of myocardial and liver activities alone,
while Formiconi’s method was employed to determinethe



backgroundand blood pool TAC’s, only the two former
responsesareshown. Again, the two setsof curvescompare
favorably, with � dev � äê- �Å° .
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Figure6: Comparisonof TAC’s recoveredvia thedirectfit of a single
compartmentmodelto projectiondata(methodof Reutteret al.) and
theCOBRA method.Blood andbackgroundTAC’s arenot shown, as
Formiconi’s methodwasusedto estimatethesein [2]

VI. DISCUSSION

The experimental results indicate that the COBRA
algorithm proposedis able to rapidly recover TAC’s from
temporallyinconsistentdynamicSPECTdatasets.In phantom
studies, the recovered parameterstypically exhibit a small
bias of the order of �Å° , and estimatorefficiency is within���Å° of the Craḿer-Rao lower boundon parametervariance.
Whenappliedto a clinical myocardialSPECTstudyrendered
temporally inconsistent through artificial reduction of
time-resolution, the recovered curves compared favorably
with those obtainedthrough application of the methodsof
FormiconiandReutteret al. to high temporalresolutiondata.

While many previous algorithms have required
access to powerful computing equipment when applied
to large multislice, multiregion studies, we have
demonstratedan algorithm which scales approximately asë >­z?{ | >­� J B Píì >­� J BLî�B with �ïm_n ratherthan �ïmH�f�
�
as in the spectralmethodof Cunninghamet al. The method
of Reutter et al. is more complex, scaling approximately
as
ë >Az?{ | J 7 ì J Î ì J îfB per iteration. However, for

typical large clinical datasetswith few regions ( z?{ | large),
computationis dominatedby the

ë >Az?{ | J 7 B term and the
DSCFPand COBRA algorithmsincur similar computational
cost for � m J . The computationtime required for the
applicationof COBRA to the clinical study using a personal
computerwas35 sversus58 s for theDSCFPalgorithm.
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